These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27760249)

  • 1. Multidirectional In Vivo Characterization of Skin Using Wiener Nonlinear Stochastic System Identification Techniques.
    Parker MD; Jones LA; Hunter IW; Taberner AJ; Nash MP; Nielsen PM
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27760249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo characterization of skin using a Weiner nonlinear stochastic system identification method.
    Chen Y; Hunter IW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6010-3. PubMed ID: 19964686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic system identification of skin properties: linear and wiener static nonlinear methods.
    Chen Y; Hunter IW
    Ann Biomed Eng; 2012 Oct; 40(10):2277-91. PubMed ID: 22539150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear stochastic system identification of skin using volterra kernels.
    Chen Y; Hunter IW
    Ann Biomed Eng; 2013 Apr; 41(4):847-62. PubMed ID: 23264003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and numerical analysis of soft tissue stiffness measurement using manual indentation device--significance of indentation geometry and soft tissue thickness.
    Iivarinen JT; Korhonen RK; Jurvelin JS
    Skin Res Technol; 2014 Aug; 20(3):347-54. PubMed ID: 24267492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method to measure the hyperelastic parameters of ex vivo breast tissue samples.
    Samani A; Plewes D
    Phys Med Biol; 2004 Sep; 49(18):4395-405. PubMed ID: 15509073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic indentation on human skin in vivo: ageing effects.
    Boyer G; Laquièze L; Le Bot A; Laquièze S; Zahouani H
    Skin Res Technol; 2009 Feb; 15(1):55-67. PubMed ID: 19152580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of skin firmness by the DynaSKIN, a novel non-contact compression device, and its use in revealing the efficacy of a skincare regimen featuring a novel anti-ageing ingredient, acetyl aspartic acid.
    Kearney EM; Messaraa C; Grennan G; Koeller G; Mavon A; Merinville E
    Skin Res Technol; 2017 May; 23(2):155-168. PubMed ID: 27546316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo.
    Delalleau A; Josse G; Lagarde JM; Zahouani H; Bergheau JM
    Skin Res Technol; 2008 May; 14(2):152-64. PubMed ID: 18412557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active sensing for viscoelastic tissue with coupling effect.
    Tanaka N; Higashimori M; Kaneko M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():106-11. PubMed ID: 19162605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo mechanical behavior of intra-abdominal organs.
    Tay BK; Kim J; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2129-38. PubMed ID: 17073317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the effects of residual stress in microindentation tests of soft tissue structures.
    Zamir EA; Taber LA
    J Biomech Eng; 2004 Apr; 126(2):276-83. PubMed ID: 15179859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating chorion softening of zebrafish embryos with a microrobotic force sensing system.
    Kim DH; Sun Y; Yun S; Lee SH; Kim B
    J Biomech; 2005 Jun; 38(6):1359-3. PubMed ID: 15940808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vivo imaging of skin under stress: potential of high-frequency (20 MHz) static 2-D elastography.
    Mofid Y; Ossant F; Imberdis C; Josse G; Patat F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 May; 53(5):925-35. PubMed ID: 16764447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model of the viscoelastic behaviour of skin in vivo and study of anisotropy.
    Khatyr F; Imberdis C; Vescovo P; Varchon D; Lagarde JM
    Skin Res Technol; 2004 May; 10(2):96-103. PubMed ID: 15059176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests.
    Zahouani H; Pailler-Mattei C; Sohm B; Vargiolu R; Cenizo V; Debret R
    Skin Res Technol; 2009 Feb; 15(1):68-76. PubMed ID: 19152581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo characterization of the mechanical properties of human skin derived from MRI and indentation techniques.
    Tran HV; Charleux F; Rachik M; Ehrlacher A; Ho Ba Tho MC
    Comput Methods Biomech Biomed Engin; 2007 Dec; 10(6):401-7. PubMed ID: 17891674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments.
    Hendriks FM; Brokken D; Oomens CW; Bader DL; Baaijens FP
    Med Eng Phys; 2006 Apr; 28(3):259-66. PubMed ID: 16099191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing elastic modulus and depth of bottom-supported inclusions in model tissues using piezoelectric cantilevers.
    Yegingil H; Shih WY; Shih WH
    Rev Sci Instrum; 2007 Nov; 78(11):115101. PubMed ID: 18052498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.