BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27760271)

  • 1. Spatial Interpolation Enables Normative Data Comparison in Gaze-Contingent Microperimetry.
    Denniss J; Astle AT
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5449-5456. PubMed ID: 27760271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central perimetric sensitivity estimates are directly influenced by the fixation target.
    Denniss J; Astle AT
    Ophthalmic Physiol Opt; 2016 Jul; 36(4):453-8. PubMed ID: 27146101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standard Automated Perimetry: Determining Spatial Summation and Its Effect on Contrast Sensitivity Across the Visual Field.
    Khuu SK; Kalloniatis M
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):3565-76. PubMed ID: 26047043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in the Relation Between Perimetric Sensitivity and Variability Between Locations Across the Visual Field.
    Gardiner SK
    Invest Ophthalmol Vis Sci; 2018 Jul; 59(8):3667-3674. PubMed ID: 30029253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundus perimetry with the Micro Perimeter 1 in normal individuals: comparison with conventional threshold perimetry.
    Springer C; Bültmann S; Völcker HE; Rohrschneider K
    Ophthalmology; 2005 May; 112(5):848-54. PubMed ID: 15878065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of refractive correction on automated perimetric thresholds.
    Weinreb RN; Perlman JP
    Am J Ophthalmol; 1986 Jun; 101(6):706-9. PubMed ID: 3717255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of Visual Field Defects Around the Monocular Preferred Retinal Locus in Age-Related Macular Degeneration.
    Denniss J; Baggaley HC; Brown GM; Rubin GS; Astle AT
    Invest Ophthalmol Vis Sci; 2017 May; 58(5):2652-2658. PubMed ID: 28524928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do Additional Testing Locations Improve the Detection of Macular Perimetric Defects in Glaucoma?
    Montesano G; McKendrick AM; Turpin A; Brusini P; Oddone F; Fogagnolo P; Perdicchi A; Johnson CA; Lanzetta P; Rossetti LM; Garway-Heath DF; Crabb DP
    Ophthalmology; 2021 Dec; 128(12):1722-1735. PubMed ID: 34153384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Restricting Perimetry Testing Algorithms to Reliable Sensitivities on Test-Retest Variability.
    Gardiner SK; Mansberger SL
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5631-5636. PubMed ID: 27784065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of Macular Integrity Assessment (MAIA) Microperimetry in Children: Sensitivity, Reliability, and Fixation Stability in Healthy Observers.
    Jones PR; Yasoubi N; Nardini M; Rubin GS
    Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6349-6359. PubMed ID: 27898980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the Structure-Function Relationship at the Macula With Standard Automated Perimetry and Microperimetry.
    Rao HL; Januwada M; Hussain RS; Pillutla LN; Begum VU; Chaitanya A; Senthil S; Garudadri CS
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8063-8. PubMed ID: 26720457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between Tendency-Oriented Perimetry (TOP) and octopus threshold perimetry.
    Morales J; Weitzman ML; González de la Rosa M
    Ophthalmology; 2000 Jan; 107(1):134-42. PubMed ID: 10647732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutralizing Peripheral Refraction Eliminates Refractive Scotomata in Tilted Disc Syndrome.
    Phu J; Wang H; Miao S; Zhou L; Khuu SK; Kalloniatis M
    Optom Vis Sci; 2018 Oct; 95(10):959-970. PubMed ID: 30247238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equating spatial summation in visual field testing reveals greater loss in optic nerve disease.
    Kalloniatis M; Khuu SK
    Ophthalmic Physiol Opt; 2016 Jul; 36(4):439-52. PubMed ID: 27197562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a variability-adjusted algorithm on the efficiency of perimetric testing.
    Gardiner SK
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):2983-92. PubMed ID: 24713484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central visual field sensitivity data from microperimetry with spatially dense sampling.
    Astle AT; Ali I; Denniss J
    Data Brief; 2016 Dec; 9():673-675. PubMed ID: 27790630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of long-term variability for standard and short-wavelength automated perimetry in stable glaucoma patients.
    Blumenthal EZ; Sample PA; Zangwill L; Lee AC; Kono Y; Weinreb RN
    Am J Ophthalmol; 2000 Mar; 129(3):309-13. PubMed ID: 10704545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship of visual threshold and reaction time to visual field eccentricity with conventional automated perimetry.
    Wall M; Kutzko KE; Chauhan BC
    Vision Res; 2002 Mar; 42(6):781-7. PubMed ID: 11888543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size threshold perimetry performs as well as conventional automated perimetry with stimulus sizes III, V, and VI for glaucomatous loss.
    Wall M; Doyle CK; Eden T; Zamba KD; Johnson CA
    Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):3975-83. PubMed ID: 23633660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discordance of Disc-Fovea Raphe Angles Determined by Optical Coherence Tomography and MP-3 Microperimetry in Eyes With a Glaucomatous Hemifield Defect.
    Mori S; Kurimoto T; Kanamori A; Sakamoto M; Ueda K; Yamada-Nakanishi Y; Nakamura M
    Invest Ophthalmol Vis Sci; 2019 Apr; 60(5):1403-1411. PubMed ID: 30943288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.