These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27760408)

  • 1. A finite element model of a six-year-old child for simulating pedestrian accidents.
    Meng Y; Pak W; Guleyupoglu B; Koya B; Gayzik FS; Untaroiu CD
    Accid Anal Prev; 2017 Jan; 98():206-213. PubMed ID: 27760408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A detailed finite element model of a mid-sized male for the investigation of traffic pedestrian accidents.
    Grindle D; Pak W; Guleyupoglu B; Koya B; Gayzik FS; Song E; Untaroiu C
    Proc Inst Mech Eng H; 2021 Mar; 235(3):300-313. PubMed ID: 33297871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Finite Element Model of a Midsize Male for Simulating Pedestrian Accidents.
    Untaroiu CD; Pak W; Meng Y; Schap J; Koya B; Gayzik S
    J Biomech Eng; 2018 Jan; 140(1):. PubMed ID: 28877309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of finite element human body models for use in a standardized protocol for pedestrian safety assessment.
    Decker W; Koya B; Pak W; Untaroiu CD; Gayzik FS
    Traffic Inj Prev; 2019; 20(sup2):S32-S36. PubMed ID: 31356121
    [No Abstract]   [Full Text] [Related]  

  • 5. Development and validation of a finite element model of a small female pedestrian.
    Pak W; Meng Y; Schap J; Koya B; Gayzik FS; Untaroiu CD
    Comput Methods Biomech Biomed Engin; 2020 Dec; 23(16):1336-1346. PubMed ID: 32787690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of pedestrian lower limb fractures by direct force: the result of being run over or impact?
    Li Z; Zou D; Liu N; Zhong L; Shao Y; Wan L; Huang P; Chen Y
    Forensic Sci Int; 2013 Jun; 229(1-3):43-51. PubMed ID: 23683907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a finite element model with six-year-old child anatomical characteristics as specified in Euro NCAP Pedestrian Human Model Certification (TB024).
    Li H; Li K; Huang Y; Lv W; Cui S; He L; Ruan JS; Wang C
    Comput Methods Biomech Biomed Engin; 2021 Jan; 24(1):76-90. PubMed ID: 32875820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling of an Adjustable Generic Simplified Vehicle for Pedestrian Impact and Simulations of Corresponding Reference PMHS Tests Using the GHBMC 50
    Song E; Petit P; Uriot J
    Stapp Car Crash J; 2018 Nov; 62():443-487. PubMed ID: 30609004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of vehicle impact velocity, vehicle front-end shapes on pedestrian injury risk.
    Han Y; Yang J; Mizuno K; Matsui Y
    Traffic Inj Prev; 2012 Sep; 13(5):507-18. PubMed ID: 22931181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling lateral bending and shearing mechanisms to define knee injury criteria for pedestrian safety.
    Mo F; Masson C; Cesari D; Arnoux PJ
    Traffic Inj Prev; 2013; 14(4):378-86. PubMed ID: 23531261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Computational Biomechanics Human Body Model Coupling Finite Element and Multibody Segments for Assessment of Head/Brain Injuries in Car-To-Pedestrian Collisions.
    Yu C; Wang F; Wang B; Li G; Li F
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31941003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obesity effects on pedestrian lower extremity injuries in vehicle-to-pedestrian impacts: A numerical investigation using human body models.
    Tang J; Zhou Q; Nie B; Hu J
    Traffic Inj Prev; 2020; 21(8):569-574. PubMed ID: 33095068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding Head Injury Risks During Car-to-Pedestrian Collisions Using Realistic Vehicle and Detailed Human Body Models.
    Gunasekaran K; Ul Islam S; Mao H
    Stapp Car Crash J; 2022 Nov; 66():175-205. PubMed ID: 37733825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of biofidelity of THUMS pedestrian model under a whole-body impact conditions with a generic sedan buck.
    Wu T; Kim T; Bollapragada V; Poulard D; Chen H; Panzer MB; Forman JL; Crandall JR; Pipkorn B
    Traffic Inj Prev; 2017 May; 18(sup1):S148-S154. PubMed ID: 28548920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of pedestrian brain injury due to vehicle impact using computational biomechanics models: Are head-only models sufficient?
    Wang F; Yu C; Wang B; Li G; Miller K; Wittek A
    Traffic Inj Prev; 2020; 21(1):102-107. PubMed ID: 31770038
    [No Abstract]   [Full Text] [Related]  

  • 16. Evaluation of geometrically personalized THUMS pedestrian model response against sedan-pedestrian PMHS impact test data.
    Chen H; Poulard D; Forman J; Crandall J; Panzer MB
    Traffic Inj Prev; 2018 Jul; 19(5):542-548. PubMed ID: 29537888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pedestrian physique differences on head injury prediction in car-to-pedestrian accidents using deep learning.
    Kunitomi S; Takayama S
    Traffic Inj Prev; 2021; 22(sup1):S82-S86. PubMed ID: 34699289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Validation of an Age-Specific Lower Extremity Finite Element Model for Simulating Pedestrian Accidents.
    Huang J; Long Y; Yan Y; Hu L
    Appl Bionics Biomech; 2018; 2018():5906987. PubMed ID: 29755584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical reconstruction of injuries in a real world minivan-to-pedestrian collision.
    Li G; Tan Z; Lv X; Ren L
    Acta Bioeng Biomech; 2019; 21(2):21-30. PubMed ID: 31741474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Seated Pedestrian Impact Design of Experiments with Ultralight Wheelchair.
    Grindle D; Untaroiu C
    Ann Biomed Eng; 2023 Jul; 51(7):1523-1534. PubMed ID: 36795241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.