These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27760811)

  • 1. Cost savings analysis and toxicity audit of a bevacizumab dose rounding policy at a community cancer center.
    Moore DC; McVey GN
    J Oncol Pharm Pract; 2018 Jan; 24(1):42-46. PubMed ID: 27760811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential cost savings by dose down-rounding of monoclonal antibodies in a community cancer center.
    Copur MS; Gnewuch C; Schriner M; Tharnish M; Gonen M; McDonald M; Kezeor J; Ramaekers RC; Gauchan D; Clark D; Greenwalt L; Mickey M; Norvell M
    J Oncol Pharm Pract; 2018 Mar; 24(2):116-120. PubMed ID: 29284380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential cost savings associated with dose rounding antineoplastic monoclonal agents.
    Francis SM; Heyliger A; Miyares MA; Viera M
    J Oncol Pharm Pract; 2015 Aug; 21(4):280-4. PubMed ID: 24821690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rounding rituximab dose to nearest vial size.
    Patel S; Le A
    J Oncol Pharm Pract; 2013 Sep; 19(3):218-21. PubMed ID: 23114093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the dosing strategies of biologic agents and the theoretical impact of dose rounding.
    Lindsey S; Parsons LB; Figg LR; Rhodes J
    J Oncol Pharm Pract; 2018 Jan; 24(1):47-55. PubMed ID: 29251257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose rounding of ipilimumab in adult metastatic melanoma patients results in significant cost savings.
    Jarkowski A; Nestico JS; Vona KL; Khushalani NI
    J Oncol Pharm Pract; 2014 Feb; 20(1):47-50. PubMed ID: 23512270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the potential impact of dose rounding parenteral chemotherapy agents on cost savings and drug waste minimization.
    Chillari KA; Southward J; Harrigan N
    J Oncol Pharm Pract; 2018 Oct; 24(7):507-510. PubMed ID: 28732452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Financial Impact of an Automated Oncology Dose-Rounding Initiative: One-Year Analysis.
    Dela-Pena JC; Eschenburg KA; LaRocca VW; Patel D; Hough SM
    JCO Clin Cancer Inform; 2021 Aug; 5():805-810. PubMed ID: 34351786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of dose rounding of chemotherapy to the nearest vial size.
    Dooley MJ; Singh S; Michael M
    Support Care Cancer; 2004 Sep; 12(9):653-6. PubMed ID: 14986078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of potential cost savings through chemotherapy and biotherapy dose-rounding at a pediatric institution.
    Graff JM; Cramer J; Kolb LL; Agherrabi Z; Burgess M
    J Oncol Pharm Pract; 2024 Jun; 30(4):705-709. PubMed ID: 37350075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cost avoidance from dose rounding biologic and cytotoxic antineoplastics.
    Vandyke TH; Athmann PW; Ballmer CM; Kintzel PE
    J Oncol Pharm Pract; 2017 Jul; 23(5):379-383. PubMed ID: 27000279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative cost savings of biosimilar and dose rounding utilization in oncology care.
    Abdelmeseh V; Brown BR; Huynh JP; Zullo AR
    J Oncol Pharm Pract; 2023 Sep; 29(6):1437-1442. PubMed ID: 36259235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cost savings from dose rounding of biologic anticancer agents in adults.
    Winger BJ; Clements EA; DeYoung JL; O'Rourke TJ; Claypool DL; Vachon S; VanDyke TH; Zimmer-Young J; Kintzel PE
    J Oncol Pharm Pract; 2011 Sep; 17(3):246-51. PubMed ID: 20332175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of rabies immune globulin dose rounding at a university health system.
    Acquisto NM; Uttaro E; Debona D; Minhaj FS
    Am J Emerg Med; 2022 Aug; 58():141-147. PubMed ID: 35689960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated parenteral chemotherapy dose-banding to improve patient safety and decrease drug costs.
    Fahey OG; Koth SM; Bergsbaken JJ; Jones HA; Trapskin PJ
    J Oncol Pharm Pract; 2020 Mar; 26(2):345-350. PubMed ID: 31046608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A real-world data approach to determine the optimal dosing strategy for pembrolizumab.
    Jang A; Nakashima L; Ng T; Fung M; Jiwani S; Schaff K; Suess J; Goncalves R; Jang D; Kuik K; Labelle S; Pow A
    J Oncol Pharm Pract; 2021 Apr; 27(3):635-643. PubMed ID: 32539663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreasing drug waste, reducing drug costs, and improving workflow efficiency through the implementation of automated chemotherapy dose rounding rules in the electronic health record system.
    Shah V; Spence A; Bartels T; Betcher J; Soefje S
    Am J Health Syst Pharm; 2022 Apr; 79(8):676-682. PubMed ID: 34940791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Costs and benefits of bevacizumab vial sharing for the treatment of retinal diseases.
    Sodré SL; Barbosa IAF; Pacheco IE; Ferreira FQT; David MA; Nascimento MA; Arieta CEL; Vasconcellos JPC
    BMC Public Health; 2019 Sep; 19(1):1252. PubMed ID: 31510981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Routine proteinuria monitoring for bevacizumab in patients with gynecologic malignancies.
    Lee CS; Alwan LM; Sun X; McLean KA; Urban RR
    J Oncol Pharm Pract; 2016 Dec; 22(6):771-776. PubMed ID: 26447100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. APPROPRIATE DOSE ROUNDING OF CYTOKINE MODULATORS FOR PAEDIATRIC RHEUMATOLOGY INPATIENTS.
    Paget C
    Arch Dis Child; 2016 Sep; 101(9):e2. PubMed ID: 27540226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.