BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27760821)

  • 1. Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting?
    Cashaback JG; McGregor HR; Pun HC; Buckingham G; Gribble PL
    J Neurophysiol; 2017 Jan; 117(1):260-274. PubMed ID: 27760821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lift observation conveys object weight distribution but partly enhances predictive lift planning.
    Rens G; Orban de Xivry JJ; Davare M; van Polanen V
    J Neurophysiol; 2021 Apr; 125(4):1348-1366. PubMed ID: 33471619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sensorimotor system minimizes prediction error for object lifting when the object's weight is uncertain.
    Brooks J; Thaler A
    J Neurophysiol; 2017 Aug; 118(2):649-651. PubMed ID: 28424295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensorimotor memory for fingertip forces: evidence for a task-independent motor memory.
    Quaney BM; Rotella DL; Peterson C; Cole KJ
    J Neurosci; 2003 Mar; 23(5):1981-6. PubMed ID: 12629204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure to disrupt the 'sensorimotor' memory for lifting objects with a precision grip.
    Cole KJ; Potash M; Peterson C
    Exp Brain Res; 2008 Jan; 184(2):157-63. PubMed ID: 17717654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited persistence of the sensorimotor memory when transferred across prehension tasks.
    Parikh PJ; Cole KJ
    Neurosci Lett; 2011 Apr; 494(2):94-8. PubMed ID: 21371526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force control in object manipulation--a model for the study of sensorimotor control strategies.
    Nowak DA; Glasauer S; Hermsdörfer J
    Neurosci Biobehav Rev; 2013 Sep; 37(8):1578-86. PubMed ID: 23791788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorimotor memory for fingertip forces during object lifting: the role of the primary motor cortex.
    Berner J; Schönfeldt-Lecuona C; Nowak DA
    Neuropsychologia; 2007 Apr; 45(8):1931-8. PubMed ID: 17239907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material evidence: interaction of well-learned priors and sensorimotor memory when lifting objects.
    Baugh LA; Kao M; Johansson RS; Flanagan JR
    J Neurophysiol; 2012 Sep; 108(5):1262-9. PubMed ID: 22696542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits.
    Nowak DA; Hermsdörfer J
    Neurosci Res; 2003 Sep; 47(1):65-72. PubMed ID: 12941448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive attribution of the source of an error in object-lifting results in differences in motor generalization.
    Fercho K; Baugh LA
    Exp Brain Res; 2016 Sep; 234(9):2667-76. PubMed ID: 27150316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensorimotor memory for object weight is based on previous experience during lifting, not holding.
    van Polanen V; Davare M
    Neuropsychologia; 2019 Aug; 131():306-315. PubMed ID: 31150662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of TMS over the anterior intraparietal area on anticipatory fingertip force scaling and the size-weight illusion.
    van Polanen V; Buckingham G; Davare M
    J Neurophysiol; 2022 Aug; 128(2):290-301. PubMed ID: 35294305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensorimotor memory and grip force control: does grip force anticipate a self-produced weight change when drinking with a straw from a cup?
    Nowak DA; Hermsdörfer J
    Eur J Neurosci; 2003 Nov; 18(10):2883-92. PubMed ID: 14656338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying feedforward control: a linear scaling model for fingertip forces and object weight.
    Lu Y; Bilaloglu S; Aluru V; Raghavan P
    J Neurophysiol; 2015 Jul; 114(1):411-8. PubMed ID: 25878151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observing object lifting errors modulates cortico-spinal excitability and improves object lifting performance.
    Buckingham G; Wong JD; Tang M; Gribble PL; Goodale MA
    Cortex; 2014 Jan; 50():115-24. PubMed ID: 23953062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of vision in detecting and correcting fingertip force errors during object lifting.
    Buckingham G; Ranger NS; Goodale MA
    J Vis; 2011 Jan; 11(1):4. PubMed ID: 21205872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the anterior intraparietal sulcus and the lateral occipital cortex in fingertip force scaling and weight perception during object lifting.
    van Polanen V; Rens G; Davare M
    J Neurophysiol; 2020 Aug; 124(2):557-573. PubMed ID: 32667252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Torque-planning errors affect the perception of object properties and sensorimotor memories during object manipulation in uncertain grasp situations.
    Schneider TR; Buckingham G; Hermsdörfer J
    J Neurophysiol; 2019 Apr; 121(4):1289-1299. PubMed ID: 30759041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.