BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27760822)

  • 1. Rhythm generation, coordination, and initiation in the vocal pathways of male African clawed frogs.
    Yamaguchi A; Cavin Barnes J; Appleby T
    J Neurophysiol; 2017 Jan; 117(1):178-194. PubMed ID: 27760822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDAR-dependent control of call duration in Xenopus laevis.
    Zornik E; Katzen AW; Rhodes HJ; Yamaguchi A
    J Neurophysiol; 2010 Jun; 103(6):3501-15. PubMed ID: 20393064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependent regulation of vocal pattern generator.
    Yamaguchi A; Gooler D; Herrold A; Patel S; Pong WW
    J Neurophysiol; 2008 Dec; 100(6):3134-43. PubMed ID: 18829853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two conserved vocal central pattern generators broadly tuned for fast and slow rates generate species-specific vocalizations in
    Yamaguchi A; Peltier M
    Elife; 2023 May; 12():. PubMed ID: 37184077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of respiratory and vocal motor pools in the isolated brain of Xenopus laevis.
    Zornik E; Kelley DB
    J Neurosci; 2008 Jan; 28(3):612-21. PubMed ID: 18199762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breathing and calling: neuronal networks in the Xenopus laevis hindbrain.
    Zornik E; Kelley DB
    J Comp Neurol; 2007 Mar; 501(3):303-15. PubMed ID: 17245708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator.
    Lawton KJ; Perry WM; Yamaguchi A; Zornik E
    J Neurosci; 2017 Mar; 37(12):3264-3275. PubMed ID: 28219984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of vocal patterns: tuning hindbrain circuits during species divergence.
    Barkan CL; Zornik E; Kelley DB
    J Exp Biol; 2017 Mar; 220(Pt 5):856-867. PubMed ID: 28011819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenopus vocalizations are controlled by a sexually differentiated hindbrain central pattern generator.
    Rhodes HJ; Yu HJ; Yamaguchi A
    J Neurosci; 2007 Feb; 27(6):1485-97. PubMed ID: 17287524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Premotor Neuron Divergence Reflects Vocal Evolution.
    Barkan CL; Kelley DB; Zornik E
    J Neurosci; 2018 Jun; 38(23):5325-5337. PubMed ID: 29875228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coding rate and duration of vocalizations of the frog, Xenopus laevis.
    Zornik E; Yamaguchi A
    J Neurosci; 2012 Aug; 32(35):12102-14. PubMed ID: 22933794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vocal circuitry in Xenopus laevis: telencephalon to laryngeal motor neurons.
    Brahic CJ; Kelley DB
    J Comp Neurol; 2003 Sep; 464(2):115-30. PubMed ID: 12898606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication.
    Kelley DB; Ballagh IH; Barkan CL; Bendesky A; Elliott TM; Evans BJ; Hall IC; Kwon YM; Kwong-Brown U; Leininger EC; Perez EC; Rhodes HJ; Villain A; Yamaguchi A; Zornik E
    J Neurosci; 2020 Jan; 40(1):22-36. PubMed ID: 31896561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct neural and neuromuscular strategies underlie independent evolution of simplified advertisement calls.
    Leininger EC; Kelley DB
    Proc Biol Sci; 2013 Apr; 280(1756):20122639. PubMed ID: 23407829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-HT2C-like receptors in the brain of Xenopus laevis initiate sex-typical fictive vocalizations.
    Yu HJ; Yamaguchi A
    J Neurophysiol; 2009 Aug; 102(2):752-65. PubMed ID: 19474172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Xenopus amygdala mediates socially appropriate vocal communication signals.
    Hall IC; Ballagh IH; Kelley DB
    J Neurosci; 2013 Sep; 33(36):14534-48. PubMed ID: 24005304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating sexually differentiated vocal patterns: laryngeal nerve and EMG recordings from vocalizing male and female african clawed frogs (Xenopus laevis).
    Yamaguchi A; Kelley DB
    J Neurosci; 2000 Feb; 20(4):1559-67. PubMed ID: 10662845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous serotonin acts on 5-HT2C-like receptors in key vocal areas of the brain stem to initiate vocalizations in Xenopus laevis.
    Yu HJ; Yamaguchi A
    J Neurophysiol; 2010 Feb; 103(2):648-58. PubMed ID: 19955293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proposed neural pathway for vocalization in South African clawed frogs, Xenopus laevis.
    Wetzel DM; Haerter UL; Kelley DB
    J Comp Physiol A; 1985 Dec; 157(6):749-61. PubMed ID: 3837111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vocal pathway degradation in gonadectomized Xenopus laevis adults.
    Zornik E; Yamaguchi A
    J Neurophysiol; 2011 Feb; 105(2):601-14. PubMed ID: 21148092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.