BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 27760825)

  • 21. Loss of androgen signaling in mesenchymal sonic hedgehog responsive cells diminishes prostate development, growth, and regeneration.
    Le V; He Y; Aldahl J; Hooker E; Yu EJ; Olson A; Kim WK; Lee DH; Wong M; Sheng R; Mi J; Geradts J; Cunha GR; Sun Z
    PLoS Genet; 2020 Jan; 16(1):e1008588. PubMed ID: 31929563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor.
    Chen G; Goto Y; Sakamoto R; Tanaka K; Matsubara E; Nakamura M; Zheng H; Lu J; Takayanagi R; Nomura M
    Biochem Biophys Res Commun; 2011 Jan; 404(3):809-15. PubMed ID: 21172305
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unique and complimentary activities of the Gli transcription factors in Hedgehog signaling.
    Lipinski RJ; Gipp JJ; Zhang J; Doles JD; Bushman W
    Exp Cell Res; 2006 Jul; 312(11):1925-38. PubMed ID: 16571352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro evidence for complex modes of nuclear beta-catenin signaling during prostate growth and tumorigenesis.
    Chesire DR; Ewing CM; Gage WR; Isaacs WB
    Oncogene; 2002 Apr; 21(17):2679-94. PubMed ID: 11965541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-aza-2'-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis.
    Tian J; Lee SO; Liang L; Luo J; Huang CK; Li L; Niu Y; Chang C
    J Biol Chem; 2012 Nov; 287(47):39954-66. PubMed ID: 23012352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Androgen signaling is essential for development of prostate cancer initiated from prostatic basal cells.
    He Y; Hooker E; Yu EJ; Cunha GR; Liao L; Xu J; Earl A; Wu H; Gonzalgo ML; Sun Z
    Oncogene; 2019 Mar; 38(13):2337-2350. PubMed ID: 30510232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis.
    Hu MC; Mo R; Bhella S; Wilson CW; Chuang PT; Hui CC; Rosenblum ND
    Development; 2006 Feb; 133(3):569-78. PubMed ID: 16396903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Therapeutic targeting of the Hedgehog-GLI pathway in prostate cancer.
    Sanchez P; Clement V; Ruiz i Altaba A
    Cancer Res; 2005 Apr; 65(8):2990-2. PubMed ID: 15833820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conditional expression of the androgen receptor induces oncogenic transformation of the mouse prostate.
    Zhu C; Luong R; Zhuo M; Johnson DT; McKenney JK; Cunha GR; Sun Z
    J Biol Chem; 2011 Sep; 286(38):33478-88. PubMed ID: 21795710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prostate cancer stem cells: do they have a basal or luminal phenotype?
    Maitland NJ; Frame FM; Polson ES; Lewis JL; Collins AT
    Horm Cancer; 2011 Feb; 2(1):47-61. PubMed ID: 21761340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The hedgehog regulated oncogenes Gli1 and Gli2 block myoblast differentiation by inhibiting MyoD-mediated transcriptional activation.
    Gerber AN; Wilson CW; Li YJ; Chuang PT
    Oncogene; 2007 Feb; 26(8):1122-36. PubMed ID: 16964293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GLI2 is expressed in normal human epidermis and BCC and induces GLI1 expression by binding to its promoter.
    Ikram MS; Neill GW; Regl G; Eichberger T; Frischauf AM; Aberger F; Quinn A; Philpott M
    J Invest Dermatol; 2004 Jun; 122(6):1503-9. PubMed ID: 15175043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GLI2-specific transcriptional activation of the bone morphogenetic protein/activin antagonist follistatin in human epidermal cells.
    Eichberger T; Kaser A; Pixner C; Schmid C; Klingler S; Winklmayr M; Hauser-Kronberger C; Aberger F; Frischauf AM
    J Biol Chem; 2008 May; 283(18):12426-37. PubMed ID: 18319260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sonic hedgehog-patched Gli signaling in the developing rat prostate gland: lobe-specific suppression by neonatal estrogens reduces ductal growth and branching.
    Pu Y; Huang L; Prins GS
    Dev Biol; 2004 Sep; 273(2):257-75. PubMed ID: 15328011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human GLI2 and GLI1 are part of a positive feedback mechanism in Basal Cell Carcinoma.
    Regl G; Neill GW; Eichberger T; Kasper M; Ikram MS; Koller J; Hintner H; Quinn AG; Frischauf AM; Aberger F
    Oncogene; 2002 Aug; 21(36):5529-39. PubMed ID: 12165851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inactivation of androgen-induced regulator ARD1 inhibits androgen receptor acetylation and prostate tumorigenesis.
    Wang Z; Wang Z; Guo J; Li Y; Bavarva JH; Qian C; Brahimi-Horn MC; Tan D; Liu W
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):3053-8. PubMed ID: 22315407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay.
    Park JW; Lee JK; Phillips JW; Huang P; Cheng D; Huang J; Witte ON
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):4482-7. PubMed ID: 27044116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells.
    Esmaeili M; Jennek S; Ludwig S; Klitzsch A; Kraft F; Melle C; Baniahmad A
    J Mol Cell Biol; 2016 Jun; 8(3):207-20. PubMed ID: 26993046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RhoA as a mediator of clinically relevant androgen action in prostate cancer cells.
    Schmidt LJ; Duncan K; Yadav N; Regan KM; Verone AR; Lohse CM; Pop EA; Attwood K; Wilding G; Mohler JL; Sebo TJ; Tindall DJ; Heemers HV
    Mol Endocrinol; 2012 May; 26(5):716-35. PubMed ID: 22456196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human α(2)β(1)(HI) CD133(+VE) epithelial prostate stem cells express low levels of active androgen receptor.
    Williamson SC; Hepburn AC; Wilson L; Coffey K; Ryan-Munden CA; Pal D; Leung HY; Robson CN; Heer R
    PLoS One; 2012; 7(11):e48944. PubMed ID: 23145034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.