BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 27760826)

  • 1. Pleckstrin Homology (PH) Domain Leucine-rich Repeat Protein Phosphatase Controls Cell Polarity by Negatively Regulating the Activity of Atypical Protein Kinase C.
    Xiong X; Li X; Wen YA; Gao T
    J Biol Chem; 2016 Nov; 291(48):25167-25178. PubMed ID: 27760826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phosphatase PHLPP controls the cellular levels of protein kinase C.
    Gao T; Brognard J; Newton AC
    J Biol Chem; 2008 Mar; 283(10):6300-11. PubMed ID: 18162466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatocyte polarity establishment and apical lumen formation are organized by Par3, Cdc42, and aPKC in conjunction with Lgl.
    Tocan V; Hayase J; Kamakura S; Kohda A; Ohga S; Kohjima M; Sumimoto H
    J Biol Chem; 2021 Dec; 297(6):101354. PubMed ID: 34717957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP): a new player in cell signaling.
    Warfel NA; Newton AC
    J Biol Chem; 2012 Feb; 287(6):3610-6. PubMed ID: 22144674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PHLiPPing the switch on Akt and protein kinase C signaling.
    Brognard J; Newton AC
    Trends Endocrinol Metab; 2008 Aug; 19(6):223-30. PubMed ID: 18511290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KIBRA suppresses apical exocytosis through inhibition of aPKC kinase activity in epithelial cells.
    Yoshihama Y; Sasaki K; Horikoshi Y; Suzuki A; Ohtsuka T; Hakuno F; Takahashi S; Ohno S; Chida K
    Curr Biol; 2011 Apr; 21(8):705-11. PubMed ID: 21497093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between PAR-3 and the aPKC-PAR-6 complex is indispensable for apical domain development of epithelial cells.
    Horikoshi Y; Suzuki A; Yamanaka T; Sasaki K; Mizuno K; Sawada H; Yonemura S; Ohno S
    J Cell Sci; 2009 May; 122(Pt 10):1595-606. PubMed ID: 19401335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHLPP-mediated dephosphorylation of S6K1 inhibits protein translation and cell growth.
    Liu J; Stevens PD; Li X; Schmidt MD; Gao T
    Mol Cell Biol; 2011 Dec; 31(24):4917-27. PubMed ID: 21986499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins.
    Hao Y; Du Q; Chen X; Zheng Z; Balsbaugh JL; Maitra S; Shabanowitz J; Hunt DF; Macara IG
    Curr Biol; 2010 Oct; 20(20):1809-18. PubMed ID: 20933426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHLPPing through history: a decade in the life of PHLPP phosphatases.
    Grzechnik AT; Newton AC
    Biochem Soc Trans; 2016 Dec; 44(6):1675-1682. PubMed ID: 27913677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms.
    Brognard J; Sierecki E; Gao T; Newton AC
    Mol Cell; 2007 Mar; 25(6):917-31. PubMed ID: 17386267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAR3-PAR6-atypical PKC polarity complex proteins in neuronal polarization.
    Hapak SM; Rothlin CV; Ghosh S
    Cell Mol Life Sci; 2018 Aug; 75(15):2735-2761. PubMed ID: 29696344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Tocopherol promotes HaCaT keratinocyte wound repair through the regulation of polarity proteins leading to the polarized cell migration.
    Horikoshi Y; Kamizaki K; Hanaki T; Morimoto M; Kitagawa Y; Nakaso K; Kusumoto C; Matsura T
    Biofactors; 2018 Mar; 44(2):180-191. PubMed ID: 29399897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shank2 Binds to aPKC and Controls Tight Junction Formation with Rap1 Signaling during Establishment of Epithelial Cell Polarity.
    Sasaki K; Kojitani N; Hirose H; Yoshihama Y; Suzuki H; Shimada M; Takayanagi A; Yamashita A; Nakaya MA; Hirano H; Takahashi H; Ohno S
    Cell Rep; 2020 Apr; 31(1):107407. PubMed ID: 32268103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis.
    Liu J; Weiss HL; Rychahou P; Jackson LN; Evers BM; Gao T
    Oncogene; 2009 Feb; 28(7):994-1004. PubMed ID: 19079341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoreceptor Neuroprotection: Regulation of Akt Activation Through Serine/Threonine Phosphatases, PHLPP and PHLPPL.
    Rajala RV; Kanan Y; Anderson RE
    Adv Exp Med Biol; 2016; 854():419-24. PubMed ID: 26427440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pleckstrin homology domain leucine-rich repeat protein phosphatases set the amplitude of receptor tyrosine kinase output.
    Reyes G; Niederst M; Cohen-Katsenelson K; Stender JD; Kunkel MT; Chen M; Brognard J; Sierecki E; Gao T; Nowak DG; Trotman LC; Glass CK; Newton AC
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):E3957-65. PubMed ID: 25201979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Willin and Par3 cooperatively regulate epithelial apical constriction through aPKC-mediated ROCK phosphorylation.
    Ishiuchi T; Takeichi M
    Nat Cell Biol; 2011 Jun; 13(7):860-6. PubMed ID: 21685893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization of the phosphatase domain of the tumor suppressor PH domain leucine-rich repeat protein phosphatase.
    Sierecki E; Newton AC
    Biochemistry; 2014 Jun; 53(24):3971-81. PubMed ID: 24892992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PHLPP is a negative regulator of RAF1, which reduces colorectal cancer cell motility and prevents tumor progression in mice.
    Li X; Stevens PD; Liu J; Yang H; Wang W; Wang C; Zeng Z; Schmidt MD; Yang M; Lee EY; Gao T
    Gastroenterology; 2014 May; 146(5):1301-12.e1-10. PubMed ID: 24530606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.