These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27761539)

  • 61. Vapor-phase hydrothermal synthesis of rutile TiO₂ nanostructured film with exposed pyramid-shaped (111) surface and superiorly photoelectrocatalytic performance.
    Chen J; Zhang H; Liu P; Wang Y; Liu X; Li G; An T; Zhao H
    J Colloid Interface Sci; 2014 Sep; 429():53-61. PubMed ID: 24935189
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Difference in TiO₂ photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water.
    Kakuma Y; Nosaka AY; Nosaka Y
    Phys Chem Chem Phys; 2015 Jul; 17(28):18691-8. PubMed ID: 26120611
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly.
    Liu Z; Zhang X; Nishimoto S; Jin M; Tryk DA; Murakami T; Fujishima A
    Langmuir; 2007 Oct; 23(22):10916-9. PubMed ID: 17892314
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Probing the interaction between 2,2'-bithiophene-5-carboxylic acid and TiO
    Dervaux J; Cormier PA; Struzzi C; Scardamaglia M; Bittencourt C; Petaccia L; Cornil D; Lasser L; Beljonne D; Cornil J; Lazzaroni R; Snyders R
    J Chem Phys; 2017 Dec; 147(24):244704. PubMed ID: 29289152
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Energetic and electronic properties of X- (Si, Ge, Sn, Pb) doped TiO2 from first-principles.
    Long R; Dai Y; Meng G; Huang B
    Phys Chem Chem Phys; 2009 Oct; 11(37):8165-72. PubMed ID: 19756272
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Does photocatalytic activity of TiO2 nanoparticles correspond to photo-cytotoxicity? Cellular uptake of TiO2 nanoparticles is important in their photo-cytotoxicity.
    Horie M; Sugino S; Kato H; Tabei Y; Nakamura A; Yoshida Y
    Toxicol Mech Methods; 2016 May; 26(4):284-94. PubMed ID: 27142467
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Templated homoepitaxial growth with atomic layer deposition of single-crystal anatase (101) and rutile (110) TiO2.
    Kraus TJ; Nepomnyashchii AB; Parkinson BA
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9946-9. PubMed ID: 24927228
    [TBL] [Abstract][Full Text] [Related]  

  • 68. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk.
    Zhang J; Li M; Feng Z; Chen J; Li C
    J Phys Chem B; 2006 Jan; 110(2):927-35. PubMed ID: 16471625
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Does a photocatalytic synergy in an anatase-rutile TiO2 composite thin-film exist?
    Kafizas A; Carmalt CJ; Parkin IP
    Chemistry; 2012 Oct; 18(41):13048-58. PubMed ID: 22945797
    [TBL] [Abstract][Full Text] [Related]  

  • 70. TiNF and Related Analogues of TiO
    Ayyub MM; Prasad S; Lingampalli SR; Manjunath K; Waghmare UV; Rao CNR
    Chemphyschem; 2018 Dec; 19(24):3410-3417. PubMed ID: 30371006
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In situ observation of the stability of anatase nanoparticles and their transformation to rutile in an acidic solution.
    Jung HS; Shin H; Kim JR; Kim JY; Hong KS; Lee JK
    Langmuir; 2004 Dec; 20(26):11732-7. PubMed ID: 15595805
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Electronic structures of hydroxylated low index surfaces of rutile and anatase-type titanium dioxide.
    Wu L; Lin J; Ren L; Li Q; Chi X; Luo L; Zhang Y; Zeng MH
    Phys Chem Chem Phys; 2022 Jun; 24(24):15091-15102. PubMed ID: 35699069
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The influence of temperature, pressure and Ag doping on the physical properties of TiO
    Tran VH; Głuchowski P; Łukowiak A; Strȩk W
    Nanoscale; 2016 Dec; 8(47):19703-19713. PubMed ID: 27874118
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Band structure engineering of anatase TiO2 by metal-assisted P-O coupling.
    Wang J; Meng Q; Huang J; Li Q; Yang J
    J Chem Phys; 2014 May; 140(17):174705. PubMed ID: 24811653
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ab initio approach to the excited electron dynamics in rutile and anatase TiO2.
    Zhukov VP; Chulkov EV
    J Phys Condens Matter; 2010 Nov; 22(43):435802. PubMed ID: 21403335
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Direct view at excess electrons in TiO2 rutile and anatase.
    Setvin M; Franchini C; Hao X; Schmid M; Janotti A; Kaltak M; Van de Walle CG; Kresse G; Diebold U
    Phys Rev Lett; 2014 Aug; 113(8):086402. PubMed ID: 25192111
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dispersion behaviors of molybdena on titania (rutile and/or anatase).
    Zhu H; Shen M; Wu Y; Li X; Hong J; Liu B; Wu X; Dong L; Chen Y
    J Phys Chem B; 2005 Jun; 109(23):11720-6. PubMed ID: 16852439
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase.
    Batzill M; Morales EH; Diebold U
    Phys Rev Lett; 2006 Jan; 96(2):026103. PubMed ID: 16486602
    [TBL] [Abstract][Full Text] [Related]  

  • 79. N3-dye-induced visible laser anatase-to-rutile phase transition on mesoporous TiO2 films.
    Parussulo AL; Huila MF; Araki K; Toma HE
    Langmuir; 2011 Aug; 27(15):9094-9. PubMed ID: 21707061
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Challenges to rutile-based geoscientific tools: low-temperature polymorphic TiO
    Pinto AJ; Sanchez-Pastor N; Callegari I; Pracejus B; Scharf A
    Sci Rep; 2020 May; 10(1):7445. PubMed ID: 32366973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.