These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 27761648)
1. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). Jopcik M; Moravcikova J; Matusikova I; Bauer M; Rajninec M; Libantova J Planta; 2017 Feb; 245(2):313-327. PubMed ID: 27761648 [TBL] [Abstract][Full Text] [Related]
2. Biochemical and antifungal characteristics of recombinant class I chitinase from Drosera rotundifolia. Rajninec M; Jopcik M; Danchenko M; Libantova J Int J Biol Macromol; 2020 Oct; 161():854-863. PubMed ID: 32553964 [TBL] [Abstract][Full Text] [Related]
3. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Matusíková I; Salaj J; Moravcíková J; Mlynárová L; Nap JP; Libantová J Planta; 2005 Dec; 222(6):1020-7. PubMed ID: 16049675 [TBL] [Abstract][Full Text] [Related]
4. Expression of Drosera rotundifolia Chitinase in Transgenic Tobacco Plants Enhanced Their Antifungal Potential. Durechova D; Jopcik M; Rajninec M; Moravcikova J; Libantova J Mol Biotechnol; 2019 Dec; 61(12):916-928. PubMed ID: 31555964 [TBL] [Abstract][Full Text] [Related]
5. Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.): chitinases in sundew tissues. Libantová J; Kämäräinen T; Moravcíková J; Matusíková I; Salaj J Mol Biol Rep; 2009 May; 36(5):851-6. PubMed ID: 18437530 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1,3-glucanase. Michalko J; Renner T; Mészáros P; Socha P; Moravčíková J; Blehová A; Libantová J; Polóniová Z; Matušíková I Planta; 2017 Jan; 245(1):77-91. PubMed ID: 27580619 [TBL] [Abstract][Full Text] [Related]
7. Molecular and functional evolution of class I chitinases for plant carnivory in the caryophyllales. Renner T; Specht CD Mol Biol Evol; 2012 Oct; 29(10):2971-85. PubMed ID: 22490823 [TBL] [Abstract][Full Text] [Related]
8. Structure prediction and network analysis of chitinases from the Cape sundew, Drosera capensis. Unhelkar MH; Duong VT; Enendu KN; Kelly JE; Tahir S; Butts CT; Martin RW Biochim Biophys Acta Gen Subj; 2017 Mar; 1861(3):636-643. PubMed ID: 28040565 [TBL] [Abstract][Full Text] [Related]
9. Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. Rottloff S; Stieber R; Maischak H; Turini FG; Heubl G; Mithöfer A J Exp Bot; 2011 Aug; 62(13):4639-47. PubMed ID: 21633084 [TBL] [Abstract][Full Text] [Related]
10. A class III acidic endochitinase is specifically expressed in the developing seeds of soybean (Glycine max [L.] Merr.). Yeboah NA; Arahira M; Nong VH; Zhang D; Kadokura K; Watanabe A; Fukazawa C Plant Mol Biol; 1998 Feb; 36(3):407-15. PubMed ID: 9484481 [TBL] [Abstract][Full Text] [Related]
11. S-like ribonuclease gene expression in carnivorous plants. Nishimura E; Kawahara M; Kodaira R; Kume M; Arai N; Nishikawa J; Ohyama T Planta; 2013 Nov; 238(5):955-67. PubMed ID: 23959189 [TBL] [Abstract][Full Text] [Related]
12. Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. Renner T; Specht CD Curr Opin Plant Biol; 2013 Aug; 16(4):436-42. PubMed ID: 23830995 [TBL] [Abstract][Full Text] [Related]
13. Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (Drosera adelae). Arai N; Ohno Y; Jumyo S; Hamaji Y; Ohyama T J Exp Bot; 2021 Feb; 72(5):1946-1961. PubMed ID: 33247920 [TBL] [Abstract][Full Text] [Related]
14. Molecular cloning of class III chitinase gene from Avicennia marina and its expression analysis in response to cadmium and lead stress. Wang LY; Wang YS; Zhang JP; Gu JD Ecotoxicology; 2015 Oct; 24(7-8):1697-704. PubMed ID: 26044930 [TBL] [Abstract][Full Text] [Related]
15. Regulation of enzyme activities in carnivorous pitcher plants of the genus Nepenthes. Saganová M; Bokor B; Stolárik T; Pavlovič A Planta; 2018 Aug; 248(2):451-464. PubMed ID: 29767335 [TBL] [Abstract][Full Text] [Related]
16. Novel proteases from the genome of the carnivorous plant Drosera capensis: Structural prediction and comparative analysis. Butts CT; Bierma JC; Martin RW Proteins; 2016 Oct; 84(10):1517-33. PubMed ID: 27353064 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia. Millett J; Foot GW; Svensson BM Sci Total Environ; 2015 Apr; 512-513():631-636. PubMed ID: 25655989 [TBL] [Abstract][Full Text] [Related]
18. Maize Endochitinase Expression in Response to Fall Armyworm Herbivory. Han Y; Taylor EB; Luthe D J Chem Ecol; 2021 Jul; 47(7):689-706. PubMed ID: 34056671 [TBL] [Abstract][Full Text] [Related]
19. Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases. Michalko J; Socha P; Mészáros P; Blehová A; Libantová J; Moravčíková J; Matušíková I Planta; 2013 Oct; 238(4):715-25. PubMed ID: 23832529 [TBL] [Abstract][Full Text] [Related]
20. Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Ramli AN; Mahadi NM; Rabu A; Murad AM; Bakar FD; Illias RM Microb Cell Fact; 2011 Nov; 10():94. PubMed ID: 22050784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]