BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27761654)

  • 21. Enzymatic hydrolysis of cellulose by the cellobiohydrolase domain of CelB from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus.
    Park JI; Kent MS; Datta S; Holmes BM; Huang Z; Simmons BA; Sale KL; Sapra R
    Bioresour Technol; 2011 May; 102(10):5988-94. PubMed ID: 21421309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Processivity and enzymatic mechanism of a multifunctional family 5 endoglucanase from
    Wu B; Zheng S; Pedroso MM; Guddat LW; Chang S; He B; Schenk G
    Biotechnol Biofuels; 2018; 11():20. PubMed ID: 29422948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Customized optimization of cellulase mixtures for differently pretreated rice straw.
    Kim IJ; Jung JY; Lee HJ; Park HS; Jung YH; Park K; Kim KH
    Bioprocess Biosyst Eng; 2015 May; 38(5):929-37. PubMed ID: 25547288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose.
    Nakamura A; Watanabe H; Ishida T; Uchihashi T; Wada M; Ando T; Igarashi K; Samejima M
    J Am Chem Soc; 2014 Mar; 136(12):4584-92. PubMed ID: 24571226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anomeric Selectivity and Product Profile of a Processive Cellulase.
    Kari J; Kont R; Borch K; Buskov S; Olsen JP; Cruyz-Bagger N; Väljamäe P; Westh P
    Biochemistry; 2017 Jan; 56(1):167-178. PubMed ID: 28026938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Swollenin from Trichoderma reesei exhibits hydrolytic activity against cellulosic substrates with features of both endoglucanases and cellobiohydrolases.
    Andberg M; Penttilä M; Saloheimo M
    Bioresour Technol; 2015 Apr; 181():105-13. PubMed ID: 25643956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N-Linked glycans are an important component of the processive machinery of cellobiohydrolases.
    Gusakov AV; Dotsenko AS; Rozhkova AM; Sinitsyn AP
    Biochimie; 2017 Jan; 132():102-108. PubMed ID: 27856189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The adsorption properties of endoglucanase to lignin and their impact on hydrolysis.
    Lu X; Feng X; Li X; Zhao J
    Bioresour Technol; 2018 Nov; 267():110-116. PubMed ID: 30014989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding site dynamics and aromatic-carbohydrate interactions in processive and non-processive family 7 glycoside hydrolases.
    Taylor CB; Payne CM; Himmel ME; Crowley MF; McCabe C; Beckham GT
    J Phys Chem B; 2013 May; 117(17):4924-33. PubMed ID: 23534900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a multi-function processive endoglucanase CHU_2103 from Cytophaga hutchinsonii.
    Zhang C; Wang Y; Li Z; Zhou X; Zhang W; Zhao Y; Lu X
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6679-87. PubMed ID: 24652064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T.
    Taylor LE; Henrissat B; Coutinho PM; Ekborg NA; Hutcheson SW; Weiner RM
    J Bacteriol; 2006 Jun; 188(11):3849-61. PubMed ID: 16707677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbohydrate-protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity.
    Knott BC; Crowley MF; Himmel ME; Ståhlberg J; Beckham GT
    J Am Chem Soc; 2014 Jun; 136(24):8810-9. PubMed ID: 24869982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions of endoglucanases with amorphous cellulose films resolved by neutron reflectometry and quartz crystal microbalance with dissipation monitoring.
    Cheng G; Datta S; Liu Z; Wang C; Murton JK; Brown PA; Jablin MS; Dubey M; Majewski J; Halbert CE; Browning JF; Esker AR; Watson BJ; Zhang H; Hutcheson SW; Huber DL; Sale KL; Simmons BA; Kent MS
    Langmuir; 2012 Jun; 28(22):8348-58. PubMed ID: 22554348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structure of a bacterial cellobiohydrolase: the catalytic core of the Thermobifida fusca family GH6 cellobiohydrolase Cel6B.
    Sandgren M; Wu M; Karkehabadi S; Mitchinson C; Kelemen BR; Larenas EA; Ståhlberg J; Hansson H
    J Mol Biol; 2013 Feb; 425(3):622-35. PubMed ID: 23220193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Processivity and the Mechanisms of Processive Endoglucanases.
    Wu S; Wu S
    Appl Biochem Biotechnol; 2020 Feb; 190(2):448-463. PubMed ID: 31378843
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endo-exo synergism in cellulose hydrolysis revisited.
    Jalak J; Kurašin M; Teugjas H; Väljamäe P
    J Biol Chem; 2012 Aug; 287(34):28802-15. PubMed ID: 22733813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A unique self-truncation of bacterial GH5 endoglucanases leads to enhanced activity and thermostability.
    Wu MH; Kao MR; Li CW; Yu SM; Ho TD
    BMC Biol; 2022 Jun; 20(1):137. PubMed ID: 35681203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The first bacterial β-1,6-endoglucanase from Saccharophagus degradans 2-40
    Wang D; Kim DH; Yun EJ; Park YC; Seo JH; Kim KH
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):197-204. PubMed ID: 27521023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal.
    Gavlighi HA; Meyer AS; Mikkelsen JD
    Biotechnol Lett; 2013 Feb; 35(2):205-12. PubMed ID: 23076365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification, characterization and modular organization of a cellulose-binding protein, CBP105, a processive beta-1,4-endoglucanase from Cellulomonas flavigena.
    Mejia-Castillo T; Hidalgo-Lara ME; Brieba LG; Ortega-Lopez J
    Biotechnol Lett; 2008 Apr; 30(4):681-7. PubMed ID: 17985078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.