These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27761654)

  • 41. Novel Penicillium cellulases for total hydrolysis of lignocellulosics.
    Marjamaa K; Toth K; Bromann PA; Szakacs G; Kruus K
    Enzyme Microb Technol; 2013 May; 52(6-7):358-69. PubMed ID: 23608505
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85.
    Seon Park J; Russell JB; Wilson DB
    Anaerobe; 2007 Apr; 13(2):83-8. PubMed ID: 17292641
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA.
    Brunecky R; Alahuhta M; Xu Q; Donohoe BS; Crowley MF; Kataeva IA; Yang SJ; Resch MG; Adams MW; Lunin VV; Himmel ME; Bomble YJ
    Science; 2013 Dec; 342(6165):1513-6. PubMed ID: 24357319
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression and characteristics of a Ca²⁺-dependent endoglucanase from Cytophaga hutchinsonii.
    Zhang C; Zhang W; Lu X
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9617-23. PubMed ID: 26169628
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity.
    Lee HJ; Lee S; Ko HJ; Kim KH; Choi IG
    Mol Cells; 2010 Apr; 29(4):379-85. PubMed ID: 20213317
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans.
    Jeon SD; Yu KO; Kim SW; Han SO
    N Biotechnol; 2012 Feb; 29(3):365-71. PubMed ID: 21689799
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel GH6 cellobiohydrolase from Paenibacillus curdlanolyticus B-6 and its synergistic action on cellulose degradation.
    Baramee S; Teeravivattanakit T; Phitsuwan P; Waeonukul R; Pason P; Tachaapaikoon C; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1175-1188. PubMed ID: 27743043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Product inhibition of cellulases studied with 14C-labeled cellulose substrates.
    Teugjas H; Väljamäe P
    Biotechnol Biofuels; 2013 Jul; 6(1):104. PubMed ID: 23883520
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular Dynamics Simulations of Family 7 Cellobiohydrolase Mutants Aimed at Reducing Product Inhibition.
    Silveira RL; Skaf MS
    J Phys Chem B; 2015 Jul; 119(29):9295-303. PubMed ID: 25436435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose.
    Liao H; Zhang XZ; Rollin JA; Zhang YH
    Biotechnol J; 2011 Nov; 6(11):1409-18. PubMed ID: 21751395
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases.
    Voutilainen SP; Puranen T; Siika-Aho M; Lappalainen A; Alapuranen M; Kallio J; Hooman S; Viikari L; Vehmaanperä J; Koivula A
    Biotechnol Bioeng; 2008 Oct; 101(3):515-28. PubMed ID: 18512263
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds.
    Bu L; Beckham GT; Crowley MF; Chang CH; Matthews JF; Bomble YJ; Adney WS; Himmel ME; Nimlos MR
    J Phys Chem B; 2009 Aug; 113(31):10994-1002. PubMed ID: 19594145
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases.
    Beckham GT; Ståhlberg J; Knott BC; Himmel ME; Crowley MF; Sandgren M; Sørlie M; Payne CM
    Curr Opin Biotechnol; 2014 Jun; 27():96-106. PubMed ID: 24863902
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Altering the linker in processive GH5 endoglucanase 1 modulates lignin binding and catalytic properties.
    Wang Z; Zhang T; Long L; Ding S
    Biotechnol Biofuels; 2018; 11():332. PubMed ID: 30568732
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated docking to explore subsite binding by glycoside hydrolase family 6 cellobiohydrolases and endoglucanases.
    Mertz B; Hill AD; Mulakala C; Reilly PJ
    Biopolymers; 2007 Nov; 87(4):249-60. PubMed ID: 17724729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: heterologous expression, characterization, and synergy with family 48 cellobiohydrolase.
    Zhang XZ; Sathitsuksanoh N; Zhang YH
    Bioresour Technol; 2010 Jul; 101(14):5534-8. PubMed ID: 20206499
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biochemical characterization of a maize stover beta-exoglucanase and its use in lignocellulose conversion.
    Han Y; Chen H
    Bioresour Technol; 2010 Aug; 101(15):6111-7. PubMed ID: 20304632
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes.
    Fox JM; Levine SE; Clark DS; Blanch HW
    Biochemistry; 2012 Jan; 51(1):442-52. PubMed ID: 22103405
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Degradation of microcrystalline cellulose: synergism between different endoglucanases of Cellulomonas sp. ATCC 21399.
    Poulsen OM; Petersen LW
    Biotechnol Bioeng; 1992 Jan; 39(1):121-3. PubMed ID: 18600895
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae.
    Voutilainen SP; Nurmi-Rantala S; Penttilä M; Koivula A
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):2991-3001. PubMed ID: 23974371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.