These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 27761657)
1. High-intensity Interval training enhances mobilization/functionality of endothelial progenitor cells and depressed shedding of vascular endothelial cells undergoing hypoxia. Tsai HH; Lin CP; Lin YH; Hsu CC; Wang JS Eur J Appl Physiol; 2016 Dec; 116(11-12):2375-2388. PubMed ID: 27761657 [TBL] [Abstract][Full Text] [Related]
2. Hypoxic exercise training improves cardiac/muscular hemodynamics and is associated with modulated circulating progenitor cells in sedentary men. Wang JS; Lee MY; Lien HY; Weng TP Int J Cardiol; 2014 Jan; 170(3):315-23. PubMed ID: 24286591 [TBL] [Abstract][Full Text] [Related]
3. Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress. Chen YC; Ho CW; Tsai HH; Wang JS Clin Sci (Lond); 2015 Apr; 128(7):425-36. PubMed ID: 25371035 [TBL] [Abstract][Full Text] [Related]
4. High-intensity Interval Training Improves Mitochondrial Function and Suppresses Thrombin Generation in Platelets undergoing Hypoxic Stress. Wu LH; Chang SC; Fu TC; Huang CH; Wang JS Sci Rep; 2017 Jun; 7(1):4191. PubMed ID: 28646182 [TBL] [Abstract][Full Text] [Related]
5. Chronic heart failure and aging - effects of exercise training on endothelial function and mechanisms of endothelial regeneration: Results from the Leipzig Exercise Intervention in Chronic heart failure and Aging (LEICA) study. Sandri M; Viehmann M; Adams V; Rabald K; Mangner N; Höllriegel R; Lurz P; Erbs S; Linke A; Kirsch K; Möbius-Winkler S; Thiery J; Teupser D; Hambrecht R; Schuler G; Gielen S Eur J Prev Cardiol; 2016 Mar; 23(4):349-58. PubMed ID: 26015451 [TBL] [Abstract][Full Text] [Related]
6. Effects of interval and continuous exercise training on CD4 lymphocyte apoptotic and autophagic responses to hypoxic stress in sedentary men. Weng TP; Huang SC; Chuang YF; Wang JS PLoS One; 2013; 8(11):e80248. PubMed ID: 24236174 [TBL] [Abstract][Full Text] [Related]
7. Exercise Training Alleviates Hypoxia-induced Mitochondrial Dysfunction in the Lymphocytes of Sedentary Males. Tsai HH; Chang SC; Chou CH; Weng TP; Hsu CC; Wang JS Sci Rep; 2016 Oct; 6():35170. PubMed ID: 27731374 [TBL] [Abstract][Full Text] [Related]
8. Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure. Van Craenenbroeck EM; Hoymans VY; Beckers PJ; Possemiers NM; Wuyts K; Paelinck BP; Vrints CJ; Conraads VM Basic Res Cardiol; 2010 Sep; 105(5):665-76. PubMed ID: 20508941 [TBL] [Abstract][Full Text] [Related]
9. Cycling Exercise Training Alleviates Hypoxia-Impaired Erythrocyte Rheology. Chou SL; Huang YC; Fu TC; Hsu CC; Wang JS Med Sci Sports Exerc; 2016 Jan; 48(1):57-65. PubMed ID: 26672920 [TBL] [Abstract][Full Text] [Related]
10. Effects of normoxic and hypoxic exercise regimens on monocyte-mediated thrombin generation in sedentary men. Wang JS; Chang YL; Chen YC; Tsai HH; Fu TC Clin Sci (Lond); 2015 Aug; 129(4):363-74. PubMed ID: 25826125 [TBL] [Abstract][Full Text] [Related]
11. The impact of different forms of exercise on endothelial progenitor cells in healthy populations. Ferentinos P; Tsakirides C; Swainson M; Davison A; Martyn-St James M; Ispoglou T Eur J Appl Physiol; 2022 Jul; 122(7):1589-1625. PubMed ID: 35305142 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of circulating progenitor cell mobilization during submaximal exercise. Niemiro GM; Parel J; Beals J; van Vliet S; Paluska SA; Moore DR; Burd NA; De Lisio M J Appl Physiol (1985); 2017 Mar; 122(3):675-682. PubMed ID: 28082336 [TBL] [Abstract][Full Text] [Related]
13. Moderate Exercise Enhances Endothelial Progenitor Cell Exosomes Release and Function. Ma C; Wang J; Liu H; Chen Y; Ma X; Chen S; Chen Y; Bihl JI; Yang YI Med Sci Sports Exerc; 2018 Oct; 50(10):2024-2032. PubMed ID: 30222687 [TBL] [Abstract][Full Text] [Related]
14. Circulating CD34+/KDR+ endothelial progenitor cells are reduced in chronic heart failure patients as a function of Type D personality. Van Craenenbroeck EM; Denollet J; Paelinck BP; Beckers P; Possemiers N; Hoymans VY; Vrints CJ; Conraads VM Clin Sci (Lond); 2009 Jul; 117(4):165-72. PubMed ID: 19173675 [TBL] [Abstract][Full Text] [Related]
15. A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile. Van Craenenbroeck EM; Vrints CJ; Haine SE; Vermeulen K; Goovaerts I; Van Tendeloo VF; Hoymans VY; Conraads VM J Appl Physiol (1985); 2008 Apr; 104(4):1006-13. PubMed ID: 18218912 [TBL] [Abstract][Full Text] [Related]
19. Interaction of platelets with endothelial progenitor cells in the experimental atherosclerosis: Role of transplanted endothelial progenitor cells and platelet microparticles. Alexandru N; Andrei E; Dragan E; Georgescu A Biol Cell; 2015 Jun; 107(6):189-204. PubMed ID: 25763472 [TBL] [Abstract][Full Text] [Related]
20. The effect of acute exercise on endothelial progenitor cells is attenuated in chronic heart failure. Van Craenenbroeck EM; Bruyndonckx L; Van Berckelaer C; Hoymans VY; Vrints CJ; Conraads VM Eur J Appl Physiol; 2011 Sep; 111(9):2375-9. PubMed ID: 21290145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]