These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 27762171)

  • 21. Robot-assisted gait training using a very small-sized Hybrid Assistive Limb® for pediatric cerebral palsy: A case report.
    Kuroda M; Nakagawa S; Mutsuzaki H; Mataki Y; Yoshikawa K; Takahashi K; Nakayama T; Iwasaki N
    Brain Dev; 2020 Jun; 42(6):468-472. PubMed ID: 32249081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of robotic walking therapy and conventional walking therapy in individuals with upper versus lower motor neuron lesions: a randomized controlled trial.
    Esclarín-Ruz A; Alcobendas-Maestro M; Casado-Lopez R; Perez-Mateos G; Florido-Sanchez MA; Gonzalez-Valdizan E; Martin JL
    Arch Phys Med Rehabil; 2014 Jun; 95(6):1023-31. PubMed ID: 24393781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Locomotor training using a robotic device in patients with subacute spinal cord injury.
    Schwartz I; Sajina A; Neeb M; Fisher I; Katz-Luerer M; Meiner Z
    Spinal Cord; 2011 Oct; 49(10):1062-7. PubMed ID: 21625239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients.
    Sczesny-Kaiser M; Höffken O; Aach M; Cruciger O; Grasmücke D; Meindl R; Schildhauer TA; Schwenkreis P; Tegenthoff M
    J Neuroeng Rehabil; 2015 Aug; 12():68. PubMed ID: 26289818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postoperative Acute-Phase Gait Training Using Hybrid Assistive Limb Improves Gait Ataxia in a Patient with Intradural Spinal Cord Compression Due to Spinal Tumors.
    Soma Y; Kubota S; Kadone H; Shimizu Y; Hada Y; Koda M; Sankai Y; Yamazaki M
    Medicina (Kaunas); 2022 Dec; 58(12):. PubMed ID: 36557027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Factors Leading to Improved Gait Function in Patients with Subacute or Chronic Central Nervous System Impairments Who Receive Functional Training with the Robot Suit Hybrid Assistive Limb.
    Nishimura M; Kobayashi S; Kinjo Y; Hokama Y; Sugawara K; Tsuchida Y; Tominaga D; Ishiuchi S
    Neurol Med Chir (Tokyo); 2018 Jan; 58(1):39-48. PubMed ID: 29199246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Randomized and Controlled Crossover Study Investigating the Improvement of Walking and Posture Functions in Chronic Stroke Patients Using HAL Exoskeleton - The HALESTRO Study (HAL-Exoskeleton STROke Study).
    Sczesny-Kaiser M; Trost R; Aach M; Schildhauer TA; Schwenkreis P; Tegenthoff M
    Front Neurosci; 2019; 13():259. PubMed ID: 30983953
    [No Abstract]   [Full Text] [Related]  

  • 29. A newly developed robot suit hybrid assistive limb facilitated walking rehabilitation after spinal surgery for thoracic ossification of the posterior longitudinal ligament: a case report.
    Sakakima H; Ijiri K; Matsuda F; Tominaga H; Biwa T; Yone K; Sankai Y
    Case Rep Orthop; 2013; 2013():621405. PubMed ID: 24369516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Training with Hybrid Assistive Limb for walking function after total knee arthroplasty.
    Yoshikawa K; Mutsuzaki H; Sano A; Koseki K; Fukaya T; Mizukami M; Yamazaki M
    J Orthop Surg Res; 2018 Jul; 13(1):163. PubMed ID: 29970139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial.
    Wirz M; Zemon DH; Rupp R; Scheel A; Colombo G; Dietz V; Hornby TG
    Arch Phys Med Rehabil; 2005 Apr; 86(4):672-80. PubMed ID: 15827916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid.
    Birch N; Graham J; Priestley T; Heywood C; Sakel M; Gall A; Nunn A; Signal N
    J Neuroeng Rehabil; 2017 Jun; 14(1):60. PubMed ID: 28629390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Usefulness of robotic gait training plus neuromodulation in chronic spinal cord injury: a case report.
    Calabrò RS; Naro A; Leo A; Bramanti P
    J Spinal Cord Med; 2017 Jan; 40(1):118-121. PubMed ID: 27077568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study.
    Wu M; Landry JM; Schmit BD; Hornby TG; Yen SC
    Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term effects of the gait treatment using a wearable cyborg hybrid assistive limb in a patient with spinal and bulbar muscular atrophy: a case report with 5 years of follow-up.
    Iijima K; Watanabe H; Nakashiro Y; Iida Y; Nonaka M; Moriwaka F; Hamada S
    Front Neurol; 2023; 14():1143820. PubMed ID: 37360345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rehabilitation of Acute Vs. Chronic Patients With Spinal Cord Injury With a Neurologically Controlled Hybrid Assistive Limb Exoskeleton: Is There a Difference in Outcome?
    Zieriacks A; Aach M; Brinkemper A; Koller D; Schildhauer TA; Grasmücke D
    Front Neurorobot; 2021; 15():728327. PubMed ID: 34776919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A case of spinal and bulbar muscular atrophy with improved walking ability following gait training using the hybrid assistive limb (HAL)].
    Mizui D; Nakai Y; Okada H; Kanai M; Yamaguchi K
    Rinsho Shinkeigaku; 2019 Mar; 59(3):157-159. PubMed ID: 30814446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy.
    Matsuda M; Iwasaki N; Mataki Y; Mutsuzaki H; Yoshikawa K; Takahashi K; Enomoto K; Sano K; Kubota A; Nakayama T; Nakayama J; Ohguro H; Mizukami M; Tomita K
    Brain Dev; 2018 Sep; 40(8):642-648. PubMed ID: 29773349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining robotic exoskeleton and body weight unweighing technology to promote walking activity in tetraplegia following SCI: A case study.
    Chang SH; Zhu F; Patel N; Afzal T; Kern M; Francisco GE
    J Spinal Cord Med; 2020 Jan; 43(1):126-129. PubMed ID: 30335593
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.