BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 2776221)

  • 1. Latrunculins--novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D.
    Spector I; Shochet NR; Blasberger D; Kashman Y
    Cell Motil Cytoskeleton; 1989; 13(3):127-44. PubMed ID: 2776221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfilament-disrupting agent latrunculin A induces and increased number of fenestrae in rat liver sinusoidal endothelial cells: comparison with cytochalasin B.
    Braet F; De Zanger R; Jans D; Spector I; Wisse E
    Hepatology; 1996 Sep; 24(3):627-35. PubMed ID: 8781335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells.
    Spector I; Shochet NR; Kashman Y; Groweiss A
    Science; 1983 Feb; 219(4584):493-5. PubMed ID: 6681676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cytochalasin D and latrunculin B on mechanical properties of cells.
    Wakatsuki T; Schwab B; Thompson NC; Elson EL
    J Cell Sci; 2001 Mar; 114(Pt 5):1025-36. PubMed ID: 11181185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide-ranging effects of eight cytochalasins and latrunculin A and B on intracellular motility and actin filament reorganization in characean internodal cells.
    Foissner I; Wasteneys GO
    Plant Cell Physiol; 2007 Apr; 48(4):585-97. PubMed ID: 17327257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of actin polymerization by latrunculin A.
    Coué M; Brenner SL; Spector I; Korn ED
    FEBS Lett; 1987 Mar; 213(2):316-8. PubMed ID: 3556584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Latrunculin inhibits the microfilament-mediated processes during fertilization, cleavage and early development in sea urchins and mice.
    Schatten G; Schatten H; Spector I; Cline C; Paweletz N; Simerly C; Petzelt C
    Exp Cell Res; 1986 Sep; 166(1):191-208. PubMed ID: 3743654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of calcium signaling and the actin cytoskeleton in the membrane block to polyspermy in mouse eggs.
    McAvey BA; Wortzman GB; Williams CJ; Evans JP
    Biol Reprod; 2002 Oct; 67(4):1342-52. PubMed ID: 12297554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The actin cytoskeleton facilitates complement-mediated activation of cytosolic phospholipase A2.
    Cybulsky AV; Takano T; Papillon J; Khadir A; Bijian K; Le Berre L
    Am J Physiol Renal Physiol; 2004 Mar; 286(3):F466-76. PubMed ID: 14644750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKC-dependent stimulation of EAAT3 glutamate transporter does not require the integrity of actin cytoskeleton.
    Bianchi MG; Rotoli BM; Dall'Asta V; Gazzola GC; Gatti R; Bussolati O
    Neurochem Int; 2006 Apr; 48(5):341-9. PubMed ID: 16417946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Latrunculin A is a potent inhibitor of phagocytosis by macrophages.
    de Oliveira CA; Mantovani B
    Life Sci; 1988; 43(22):1825-30. PubMed ID: 3200109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of actin microfilaments in the down-regulation of the degranulation response in RBL-2H3 mast cells.
    Frigeri L; Apgar JR
    J Immunol; 1999 Feb; 162(4):2243-50. PubMed ID: 9973500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells.
    Valderrama F; Durán JM; Babià T; Barth H; Renau-Piqueras J; Egea G
    Traffic; 2001 Oct; 2(10):717-26. PubMed ID: 11576448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the actin cytoskeleton results in nuclear factor-kappaB activation and inflammatory mediator production in cultured human intestinal epithelial cells.
    Németh ZH; Deitch EA; Davidson MT; Szabó C; Vizi ES; Haskó G
    J Cell Physiol; 2004 Jul; 200(1):71-81. PubMed ID: 15137059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive natural and semisynthetic latrunculins.
    El Sayed KA; Youssef DT; Marchetti D
    J Nat Prod; 2006 Feb; 69(2):219-23. PubMed ID: 16499319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new dimension to the biosynthetic products isolated from the sponge Negombata magnifica.
    Vilozny B; Amagata T; Mooberry SL; Crews P
    J Nat Prod; 2004 Jun; 67(6):1055-7. PubMed ID: 15217296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of proto-oncogene proteins and cyclins depends on intact microfilaments.
    Fasshauer M; Iwig M; Glaesser D
    Eur J Cell Biol; 1998 Nov; 77(3):188-95. PubMed ID: 9860134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of latrunculin-A resistance in HeLa cells by expression of R183A D184A mutant beta-actin.
    Fujita M; Ichinose S; Kiyono T; Tsurumi T; Omori A
    Oncogene; 2003 Jan; 22(4):627-31. PubMed ID: 12555075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth regulation by cell shape alteration and organization of the cytoskeleton.
    Iwig M; Czeslick E; Müller A; Gruner M; Spindler M; Glaesser D
    Eur J Cell Biol; 1995 Jun; 67(2):145-57. PubMed ID: 7545109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study.
    Rotsch C; Radmacher M
    Biophys J; 2000 Jan; 78(1):520-35. PubMed ID: 10620315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.