BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27762237)

  • 1. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies.
    Normann RA; Fernandez E
    J Neural Eng; 2016 Dec; 13(6):061003. PubMed ID: 27762237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves.
    Davis TS; Wark HA; Hutchinson DT; Warren DJ; O'Neill K; Scheinblum T; Clark GA; Normann RA; Greger B
    J Neural Eng; 2016 Jun; 13(3):036001. PubMed ID: 27001946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using multiple high-count electrode arrays in human median and ulnar nerves to restore sensorimotor function after previous transradial amputation of the hand.
    Clark GA; Wendelken S; Page DM; Davis T; Wark HA; Normann RA; Warren DJ; Hutchinson DT
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1977-80. PubMed ID: 25570369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex.
    Rousche PJ; Normann RA
    J Neurosci Methods; 1998 Jul; 82(1):1-15. PubMed ID: 10223510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform.
    Leber M; Körner J; Reiche CF; Yin M; Bhandari R; Franklin R; Negi S; Solzbacher F
    Adv Exp Med Biol; 2019; 1101():1-40. PubMed ID: 31729670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex.
    Black BJ; Kanneganti A; Joshi-Imre A; Rihani R; Chakraborty B; Abbott J; Pancrazio JJ; Cogan SF
    J Neurophysiol; 2018 Oct; 120(4):2083-2090. PubMed ID: 30020844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A histological analysis of human median and ulnar nerves following implantation of Utah slanted electrode arrays.
    Christensen MB; Wark HA; Hutchinson DT
    Biomaterials; 2016 Jan; 77():235-42. PubMed ID: 26606449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an intrafascicular neural interface for peripheral nerve implantation.
    Chou N; Kang Y; Kang HS; Yun JD; Chun W; Lee KJ; Moon H; Choi IK; Byun D; Song I; Moon DJ; Moon JH; Lee BH; Kim J; You SK; Kim S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():847-850. PubMed ID: 28813926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The complement cascade at the Utah microelectrode-tissue interface.
    Bennett C; Álvarez-Ciara A; Franklin M; Dietrich WD; Prasad A
    Biomaterials; 2021 Jan; 268():120583. PubMed ID: 33310540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerative Electrode Interfaces for Neural Prostheses.
    Thompson CH; Zoratti MJ; Langhals NB; Purcell EK
    Tissue Eng Part B Rev; 2016 Apr; 22(2):125-35. PubMed ID: 26421660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longevity and reliability of chronic unit recordings using the Utah, intracortical multi-electrode arrays.
    Sponheim C; Papadourakis V; Collinger JL; Downey J; Weiss J; Pentousi L; Elliott K; Hatsopoulos NG
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34847547
    [No Abstract]   [Full Text] [Related]  

  • 14. [Review on the progress of peripheral nervous microelectrode].
    Li L; Zhang J; Chen T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 May; 19(5):395-9. PubMed ID: 15960448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of micro-ECoG substrate footprint on the meningeal tissue response.
    Schendel AA; Nonte MW; Vokoun C; Richner TJ; Brodnick SK; Atry F; Frye S; Bostrom P; Pashaie R; Thongpang S; Eliceiri KW; Williams JC
    J Neural Eng; 2014 Aug; 11(4):046011. PubMed ID: 24941335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfabricated nerve-electrode interfaces in neural prosthetics and neural engineering.
    Song YA; Ibrahim AM; Rabie AN; Han J; Lin SJ
    Biotechnol Genet Eng Rev; 2013; 29():113-34. PubMed ID: 24568276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing a somatosensory neural prosthesis: percepts evoked by different patterns of thalamic stimulation.
    Heming E; Sanden A; Kiss ZH
    J Neural Eng; 2010 Dec; 7(6):064001. PubMed ID: 21084731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.