BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27762237)

  • 21. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A neural interface for a cortical vision prosthesis.
    Normann RA; Maynard EM; Rousche PJ; Warren DJ
    Vision Res; 1999 Jul; 39(15):2577-87. PubMed ID: 10396626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of Al
    Caldwell R; Mandal H; Sharma R; Solzbacher F; Tathireddy P; Rieth L
    J Neural Eng; 2017 Aug; 14(4):046011. PubMed ID: 28351998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lower layers in the motor cortex are more effective targets for penetrating microelectrodes in cortical prostheses.
    Parikh H; Marzullo TC; Kipke DR
    J Neural Eng; 2009 Apr; 6(2):026004. PubMed ID: 19255460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve.
    Christensen MB; Pearce SM; Ledbetter NM; Warren DJ; Clark GA; Tresco PA
    Acta Biomater; 2014 Nov; 10(11):4650-4660. PubMed ID: 25042798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
    Negi S; Bhandari R; Rieth L; Solzbacher F
    Biomed Mater; 2010 Feb; 5(1):15007. PubMed ID: 20124668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multilayer 3D electrodes for neural implants.
    Airaghi Leccardi MJI; Vagni P; Ghezzi D
    J Neural Eng; 2019 Apr; 16(2):026013. PubMed ID: 30215607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute monitoring of genitourinary function using intrafascicular electrodes: selective pudendal nerve activity corresponding to bladder filling, bladder fullness, and genital stimulation.
    Mathews KS; Wark HA; Warren DJ; Christensen MB; Nolta NF; Cartwright PC; Normann RA
    Urology; 2014 Sep; 84(3):722-9. PubMed ID: 25168559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Behavioral and cellular consequences of high-electrode count Utah Arrays chronically implanted in rat sciatic nerve.
    Wark HA; Mathews KS; Normann RA; Fernandez E
    J Neural Eng; 2014 Aug; 11(4):046027. PubMed ID: 25031219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implanted electrodes in peripheral nerve stimulation and recording: prospects of their application in electronic prosthesis design.
    Li L; Yan H; Campbell G; Lineaweaver WC; Akdemir O; Zhang F
    J Long Term Eff Med Implants; 2008; 18(3):227-37. PubMed ID: 20001894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Progress on Microelectrodes in Neural Interfaces.
    Kim GH; Kim K; Lee E; An T; Choi W; Lim G; Shin JH
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30332782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel Microchannel Electrode Array: towards bioelectronic medical interfacing of small peripheral nerves.
    Kim YT; Kanneganti A; Fatemi S; Nothnagle C; Wijesundara M; Romero-Ortega MI
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1981-4. PubMed ID: 25570370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance.
    Nolta NF; Christensen MB; Crane PD; Skousen JL; Tresco PA
    Biomaterials; 2015; 53():753-62. PubMed ID: 25890770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A PDMS-based conical-well microelectrode array for surface stimulation and recording of neural tissues.
    Guo L; Meacham KW; Hochman S; DeWeerth SP
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2485-94. PubMed ID: 20550983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording.
    Venkatraman S; Hendricks J; King ZA; Sereno AJ; Richardson-Burns S; Martin D; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):307-16. PubMed ID: 21292598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of rat sciatic nerve function following acute implantation of high density Utah slanted electrode array (25 electrodes/mm(2) ) based on neural recordings and evoked muscle activity.
    Mathews KS; Wark HA; Normann RA
    Muscle Nerve; 2014 Sep; 50(3):417-24. PubMed ID: 24638985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing.
    Hébert C; Warnking J; Depaulis A; Garçon LA; Mermoux M; Eon D; Mailley P; Omnès F
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():25-31. PubMed ID: 25491956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.