These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27762237)

  • 41. Implantable microscale neural interfaces.
    Cheung KC
    Biomed Microdevices; 2007 Dec; 9(6):923-38. PubMed ID: 17252207
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Penetrating multichannel stimulation and recording electrodes in auditory prosthesis research.
    Anderson DJ
    Hear Res; 2008 Aug; 242(1-2):31-41. PubMed ID: 18343062
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A floating metal microelectrode array for chronic implantation.
    Musallam S; Bak MJ; Troyk PR; Andersen RA
    J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays.
    Clark GA; Ledbetter NM; Warren DJ; Harrison RR
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4641-4. PubMed ID: 22255372
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing.
    Piret G; Hébert C; Mazellier JP; Rousseau L; Scorsone E; Cottance M; Lissorgues G; Heuschkel MO; Picaud S; Bergonzo P; Yvert B
    Biomaterials; 2015 Jun; 53():173-83. PubMed ID: 25890717
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wafer-scale fabrication of penetrating neural microelectrode arrays.
    Bhandari R; Negi S; Solzbacher F
    Biomed Microdevices; 2010 Oct; 12(5):797-807. PubMed ID: 20480240
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
    Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP
    J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spectral distribution of local field potential responses to electrical stimulation of the retina.
    Wong YT; Halupka K; Kameneva T; Cloherty SL; Grayden DB; Burkitt AN; Meffin H; Shivdasani MN
    J Neural Eng; 2016 Jun; 13(3):036003. PubMed ID: 27025402
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Technology insight: future neuroprosthetic therapies for disorders of the nervous system.
    Normann RA
    Nat Clin Pract Neurol; 2007 Aug; 3(8):444-52. PubMed ID: 17671522
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes.
    Hara SA; Kim BJ; Kuo JT; Lee CD; Meng E; Pikov V
    J Neural Eng; 2016 Dec; 13(6):066020. PubMed ID: 27819256
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Reconnecting the Hand and Arm with Brain (ReHAB) Commentary on "An Integrated Brain-Machine Interface Platform With Thousands of Channels".
    Kirsch RF; Ajiboye AB; Miller JP
    J Med Internet Res; 2019 Oct; 21(10):e16339. PubMed ID: 31674921
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays.
    Dowden BR; Frankel MA; Normann RA; Clark GA
    J Neural Eng; 2012 Feb; 9(1):016006. PubMed ID: 22173566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Designing tyrosine-derived polycarbonate polymers for biodegradable regenerative type neural interface capable of neural recording.
    Lewitus D; Vogelstein RJ; Zhen G; Choi YS; Kohn J; Harshbarger S; Jia X
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):204-12. PubMed ID: 21147598
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Longitudinal neural and vascular structural dynamics produced by chronic microelectrode implantation.
    Welle CG; Gao YR; Ye M; Lozzi A; Boretsky A; Abliz E; Hammer DX
    Biomaterials; 2020 Apr; 238():119831. PubMed ID: 32045783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of capacitive coupling within microelectrode array.
    Hu Z; Troyk PR; Detlefsen DE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3365-8. PubMed ID: 17947024
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Therapeutic hypothermia reduces cortical inflammation associated with utah array implants.
    Dugan EA; Bennett C; Tamames I; Dietrich WD; King CS; Prasad A; Rajguru SM
    J Neural Eng; 2020 Apr; 17(2):026035. PubMed ID: 32240985
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates.
    Malaga KA; Schroeder KE; Patel PR; Irwin ZT; Thompson DE; Nicole Bentley J; Lempka SF; Chestek CA; Patil PG
    J Neural Eng; 2016 Feb; 13(1):016010. PubMed ID: 26655972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity.
    Vomero M; Castagnola E; Ciarpella F; Maggiolini E; Goshi N; Zucchini E; Carli S; Fadiga L; Kassegne S; Ricci D
    Sci Rep; 2017 Jan; 7():40332. PubMed ID: 28084398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ceramic-based multisite electrode arrays for chronic single-neuron recording.
    Moxon KA; Leiser SC; Gerhardt GA; Barbee KA; Chapin JK
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):647-56. PubMed ID: 15072219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.