These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27762239)

  • 1. A pipeline of spatio-temporal filtering for predicting the laterality of self-initiated fine movements from single trial readiness potentials.
    Zeid EA; Sereshkeh AR; Chau T
    J Neural Eng; 2016 Dec; 13(6):066012. PubMed ID: 27762239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Ternary Brain-Computer Interface Based on Single-Trial Readiness Potentials of Self-initiated Fine Movements: A Diversified Classification Scheme.
    Abou Zeid E; Rezazadeh Sereshkeh A; Schultz B; Chau T
    Front Hum Neurosci; 2017; 11():254. PubMed ID: 28596725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive spatio-temporal filtering for movement related potentials in EEG-based brain-computer interfaces.
    Lu J; Xie K; McFarland DJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):847-57. PubMed ID: 24723632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RSTFC: A Novel Algorithm for Spatio-Temporal Filtering and Classification of Single-Trial EEG.
    Qi F; Li Y; Wu W
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3070-82. PubMed ID: 25730834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode fusion for the prediction of self-initiated fine movements from single-trial readiness potentials.
    Abou Zeid E; Chau T
    Int J Neural Syst; 2015 Jun; 25(4):1550014. PubMed ID: 25903225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining spatial filters for the classification of single-trial EEG in a finger movement task.
    Liao X; Yao D; Wu D; Li C
    IEEE Trans Biomed Eng; 2007 May; 54(5):821-31. PubMed ID: 17518278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients.
    Jochumsen M; Niazi IK; Mrachacz-Kersting N; Jiang N; Farina D; Dremstrup K
    J Neural Eng; 2015 Oct; 12(5):056003. PubMed ID: 26214339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.
    Bai O; Lin P; Vorbach S; Li J; Furlani S; Hallett M
    Clin Neurophysiol; 2007 Dec; 118(12):2637-55. PubMed ID: 17967559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhance decoding of pre-movement EEG patterns for brain-computer interfaces.
    Wang K; Xu M; Wang Y; Zhang S; Chen L; Ming D
    J Neural Eng; 2020 Jan; 17(1):016033. PubMed ID: 31747642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracerebral recording of potentials accompanying simple limb movements: a SEEG study in epileptic patients.
    Rektor I; Louvel J; Lamarche M
    Electroencephalogr Clin Neurophysiol; 1998 Oct; 107(4):277-86. PubMed ID: 9872445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the regularity of preparatory activity preceding movements with the dominant and non-dominant hand: a readiness potential study.
    Dirnberger G; Duregger C; Lindinger G; Lang W
    Int J Psychophysiol; 2011 Aug; 81(2):127-31. PubMed ID: 21586305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP's): toward a brain-computer interface (BCI).
    Pineda JA; Allison BZ; Vankov A
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):219-22. PubMed ID: 10896193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method to determine temporal variability in the period of pre-movement electroencephalographic activity.
    Dirnberger G; Lang W; Lindinger G
    Int J Psychophysiol; 2008 Dec; 70(3):165-70. PubMed ID: 18804127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BCI Competition 2003--Data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG.
    Wang Y; Zhang Z; Li Y; Gao X; Gao S; Yang F
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1081-6. PubMed ID: 15188883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.
    Buccino AP; Keles HO; Omurtag A
    PLoS One; 2016; 11(1):e0146610. PubMed ID: 26730580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constrained blind source extraction of readiness potentials from EEG.
    Ahmadian P; Sanei S; Ascari L; González-Villanueva L; Alessandra Umiltà M
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):567-75. PubMed ID: 23193324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do readiness potentials happen all the time?
    Travers E; Khalighinejad N; Schurger A; Haggard P
    Neuroimage; 2020 Feb; 206():116286. PubMed ID: 31629833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The backtracking search optimization algorithm for frequency band and time segment selection in motor imagery-based brain-computer interfaces.
    Wei Z; Wei Q
    J Integr Neurosci; 2016 Sep; 15(3):347-364. PubMed ID: 27681162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.