These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27762271)

  • 1. Thermally enhanced photoluminescence for heat harvesting in photovoltaics.
    Manor A; Kruger N; Sabapathy T; Rotschild C
    Nat Commun; 2016 Oct; 7():13167. PubMed ID: 27762271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The generalized Shockley-Queisser limit for nanostructured solar cells.
    Xu Y; Gong T; Munday JN
    Sci Rep; 2015 Sep; 5():13536. PubMed ID: 26329479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems.
    Abbas MA; Kim J; Rana AS; Kim I; Rehman B; Ahmad Z; Massoud Y; Seong J; Badloe T; Park K; Mehmood MQ; Zubair M; Rho J
    Nanoscale; 2022 May; 14(17):6425-6436. PubMed ID: 35416207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ideal Bandgap Organic-Inorganic Hybrid Perovskite Solar Cells.
    Yang Z; Rajagopal A; Jen AK
    Adv Mater; 2017 Dec; 29(47):. PubMed ID: 29134752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy upconversion in GaP/GaNP core/shell nanowires for enhanced near-infrared light harvesting.
    Dobrovolsky A; Sukrittanon S; Kuang Y; Tu CW; Chen WM; Buyanova IA
    Small; 2014 Nov; 10(21):4403-8. PubMed ID: 25045136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage.
    Limpert S; Burke A; Chen IJ; Anttu N; Lehmann S; Fahlvik S; Bremner S; Conibeer G; Thelander C; Pistol ME; Linke H
    Nanotechnology; 2017 Oct; 28(43):434001. PubMed ID: 28857751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons.
    Farrell DJ; Sodabanlu H; Wang Y; Sugiyama M; Okada Y
    Nat Commun; 2015 Nov; 6():8685. PubMed ID: 26541415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit.
    Rephaeli E; Fan S
    Opt Express; 2009 Aug; 17(17):15145-59. PubMed ID: 19687992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments.
    Safi TS; Munday JN
    Opt Express; 2015 Sep; 23(19):A1120-8. PubMed ID: 26406742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit.
    Mann SA; Grote RR; Osgood RM; Alù A; Garnett EC
    ACS Nano; 2016 Sep; 10(9):8620-31. PubMed ID: 27580421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar thermal harvesting for enhanced photocatalytic reactions.
    Hashemi SM; Choi JW; Psaltis D
    Phys Chem Chem Phys; 2014 Mar; 16(11):5137-41. PubMed ID: 24480846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion.
    St-Gelais R; Bhatt GR; Zhu L; Fan S; Lipson M
    ACS Nano; 2017 Mar; 11(3):3001-3009. PubMed ID: 28287714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic Water-Splitting Enhancement by Sub-Bandgap Photon Harvesting.
    Monguzzi A; Oertel A; Braga D; Riedinger A; Kim DK; Knüsel PN; Bianchi A; Mauri M; Simonutti R; Norris DJ; Meinardi F
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40180-40186. PubMed ID: 29083152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only).
    Olsson P; Guillemoles JF; Domain C
    J Phys Condens Matter; 2008 Feb; 20(6):064226. PubMed ID: 21693888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximum Theoretical Efficiency Limit of Photovoltaic Devices: Effect of Band Structure on Excited State Entropy.
    Osterloh FE
    J Phys Chem Lett; 2014 Oct; 5(19):3354-9. PubMed ID: 26278444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%.
    Wang J; Ming T; Jin Z; Wang J; Sun LD; Yan CH
    Nat Commun; 2014 Nov; 5():5669. PubMed ID: 25430519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nanophotonic solar thermophotovoltaic device.
    Lenert A; Bierman DM; Nam Y; Chan WR; Celanović I; Soljačić M; Wang EN
    Nat Nanotechnol; 2014 Feb; 9(2):126-30. PubMed ID: 24441985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanochemistry and nanomaterials for photovoltaics.
    Chen G; Seo J; Yang C; Prasad PN
    Chem Soc Rev; 2013 Nov; 42(21):8304-38. PubMed ID: 23868557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.