These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27762271)

  • 41. Luminescent Solar Power-PV/Thermal Hybrid Electricity Generation for Cost-Effective Dispatchable Solar Energy.
    Haviv S; Revivo N; Kruger N; Manor A; Khachatryan B; Shustov M; Rotschild C
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36040-36045. PubMed ID: 32691582
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photonics for Photovoltaics: Advances and Opportunities.
    Garnett EC; Ehrler B; Polman A; Alarcon-Llado E
    ACS Photonics; 2021 Jan; 8(1):61-70. PubMed ID: 33506072
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Semitransparent thermophotovoltaics for efficient utilization of moderate temperature thermal radiation.
    Lenert A; Burger T; Roy-Layinde B; Lentz R; Berquist ZJ; Forrest SR
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2215977119. PubMed ID: 36409918
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion.
    Nienhaus L; Wu M; Bulović V; Baldo MA; Bawendi MG
    Dalton Trans; 2018 Jul; 47(26):8509-8516. PubMed ID: 29493697
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photon upconversion and photocurrent generation via self-assembly at organic-inorganic interfaces.
    Hill SP; Banerjee T; Dilbeck T; Hanson K
    J Phys Chem Lett; 2015 Nov; 6(22):4510-7. PubMed ID: 26535617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting.
    Chang CC; Kort-Kamp WJM; Nogan J; Luk TS; Azad AK; Taylor AJ; Dalvit DAR; Sykora M; Chen HT
    Nano Lett; 2018 Dec; 18(12):7665-7673. PubMed ID: 30395478
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fundamental Efficiency Limit of Lead Iodide Perovskite Solar Cells.
    Pazos-Outón LM; Xiao TP; Yablonovitch E
    J Phys Chem Lett; 2018 Apr; 9(7):1703-1711. PubMed ID: 29537271
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alleviating Luminescence Concentration Quenching in Upconversion Nanoparticles through Organic Dye Sensitization.
    Wei W; Chen G; Baev A; He GS; Shao W; Damasco J; Prasad PN
    J Am Chem Soc; 2016 Nov; 138(46):15130-15133. PubMed ID: 27933882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.
    Thomas NH; Chen Z; Fan S; Minnich AJ
    Sci Rep; 2017 Jul; 7(1):5362. PubMed ID: 28706230
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient Visible-to-NIR Spectral Conversion for Polycrystalline Si Solar Cells and Revisiting the Energy Transfer Mechanism from Ce
    Wu D; Dong X; Xiao W; Hao Z; Zhang J
    Inorg Chem; 2019 Jan; 58(1):234-242. PubMed ID: 30566334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selective Solar Harvesting Windows for Full-Spectrum Utilization.
    Li W; Lin C; Huang G; Hur J; Huang B; Yao S
    Adv Sci (Weinh); 2022 Jul; 9(21):e2201738. PubMed ID: 35666069
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions.
    Cushing SK; Bristow AD; Wu N
    Phys Chem Chem Phys; 2015 Nov; 17(44):30013-22. PubMed ID: 26497739
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Performance-limiting factors for GaAs-based single nanowire photovoltaics.
    Wang X; Khan MR; Lundstrom M; Bermel P
    Opt Express; 2014 Mar; 22(5):A344-58. PubMed ID: 24800291
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Performance-limiting factors for GaAs-based single nanowire photovoltaics.
    Wang X; Khan MR; Lundstrom M; Bermel P
    Opt Express; 2014 Mar; 22 Suppl 2():A344-58. PubMed ID: 24922244
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites.
    Fang HH; Adjokatse S; Shao S; Even J; Loi MA
    Nat Commun; 2018 Jan; 9(1):243. PubMed ID: 29339814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy conversion approaches and materials for high-efficiency photovoltaics.
    Green MA; Bremner SP
    Nat Mater; 2016 Dec; 16(1):23-34. PubMed ID: 27994249
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells.
    Guo F; Li N; Fecher FW; Gasparini N; Ramirez Quiroz CO; Bronnbauer C; Hou Y; Radmilović VV; Radmilović VR; Spiecker E; Forberich K; Brabec CJ
    Nat Commun; 2015 Jul; 6():7730. PubMed ID: 26177808
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lanthanide-doped upconversion materials: emerging applications for photovoltaics and photocatalysis.
    Yang W; Li X; Chi D; Zhang H; Liu X
    Nanotechnology; 2014 Dec; 25(48):482001. PubMed ID: 25397916
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resource efficient plasmon-based 2D-photovoltaics with reflective support.
    Hägglund C; Apell SP
    Opt Express; 2010 Sep; 18 Suppl 3():A343-56. PubMed ID: 21165065
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.
    Wilson MW; Rao A; Ehrler B; Friend RH
    Acc Chem Res; 2013 Jun; 46(6):1330-8. PubMed ID: 23656886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.