BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 27762310)

  • 1. Chromatin accessibility contributes to simultaneous mutations of cancer genes.
    Shi Y; Su XB; He KY; Wu BH; Zhang BY; Han ZG
    Sci Rep; 2016 Oct; 6():35270. PubMed ID: 27762310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pan-cancer analysis of somatic mutations and epigenetic alterations in insulated neighbourhood boundaries.
    Pinoli P; Stamoulakatou E; Nguyen AP; Rodríguez Martínez M; Ceri S
    PLoS One; 2020; 15(1):e0227180. PubMed ID: 31945090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline.
    Kaiser VB; Semple CA
    Genome Biol; 2018 Jul; 19(1):101. PubMed ID: 30060743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of the 3D cancer genome blueprint.
    Achinger-Kawecka J; Clark SJ
    Epigenomics; 2017 Jan; 9(1):47-55. PubMed ID: 27936932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers.
    Guo YA; Chang MM; Huang W; Ooi WF; Xing M; Tan P; Skanderup AJ
    Nat Commun; 2018 Apr; 9(1):1520. PubMed ID: 29670109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and genetic determinants of mutation rate variability in regulatory elements of cancer genomes.
    Lee CA; Abd-Rabbo D; Reimand J
    Genome Biol; 2021 May; 22(1):133. PubMed ID: 33941236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pan-cancer analysis of driver gene mutations, DNA methylation and gene expressions reveals that chromatin remodeling is a major mechanism inducing global changes in cancer epigenomes.
    Youn A; Kim KI; Rabadan R; Tycko B; Shen Y; Wang S
    BMC Med Genomics; 2018 Nov; 11(1):98. PubMed ID: 30400878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatic mutations in colorectal cancer are associated with the epigenetic modifications.
    Lei H; Tao K
    J Cell Mol Med; 2020 Oct; 24(20):11828-11836. PubMed ID: 32865336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Cancer Drivers at CTCF Insulators in 1,962 Whole Genomes.
    Liu EM; Martinez-Fundichely A; Diaz BJ; Aronson B; Cuykendall T; MacKay M; Dhingra P; Wong EWP; Chi P; Apostolou E; Sanjana NE; Khurana E
    Cell Syst; 2019 May; 8(5):446-455.e8. PubMed ID: 31078526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long noncoding RNA HOTTIP cooperates with CCCTC-binding factor to coordinate HOXA gene expression.
    Wang F; Tang Z; Shao H; Guo J; Tan T; Dong Y; Lin L
    Biochem Biophys Res Commun; 2018 Jun; 500(4):852-859. PubMed ID: 29698677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial patterns of somatic gene mutations in cancer.
    Yeang CH; McCormick F; Levine A
    FASEB J; 2008 Aug; 22(8):2605-22. PubMed ID: 18434431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Mutations Form at CTCF-Cohesin Binding Sites in Melanoma Due to Uneven Nucleotide Excision Repair across the Motif.
    Poulos RC; Thoms JAI; Guan YF; Unnikrishnan A; Pimanda JE; Wong JWH
    Cell Rep; 2016 Dec; 17(11):2865-2872. PubMed ID: 27974201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterarchy of transcription factors driving basal and luminal cell phenotypes in human urothelium.
    Fishwick C; Higgins J; Percival-Alwyn L; Hustler A; Pearson J; Bastkowski S; Moxon S; Swarbreck D; Greenman CD; Southgate J
    Cell Death Differ; 2017 May; 24(5):809-818. PubMed ID: 28282036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function relationships explain CTCF zinc finger mutation phenotypes in cancer.
    Bailey CG; Gupta S; Metierre C; Amarasekera PMS; O'Young P; Kyaw W; Laletin T; Francis H; Semaan C; Sharifi Tabar M; Singh KP; Mullighan CG; Wolkenhauer O; Schmitz U; Rasko JEJ
    Cell Mol Life Sci; 2021 Dec; 78(23):7519-7536. PubMed ID: 34657170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greater Than the Sum of Parts: Complexity of the Dynamic Epigenome.
    Soshnev AA; Josefowicz SZ; Allis CD
    Mol Cell; 2016 Jun; 62(5):681-94. PubMed ID: 27259201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CTCF Expression is Essential for Somatic Cell Viability and Protection Against Cancer.
    Bailey CG; Metierre C; Feng Y; Baidya K; Filippova GN; Loukinov DI; Lobanenkov VV; Semaan C; Rasko JE
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30513694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9 offers a new tool for studying the role of chromatin architecture in disease pathogenesis.
    Guo X; Dean A
    Genome Biol; 2018 Nov; 19(1):185. PubMed ID: 30400943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutated Chromatin Regulatory Factors as Tumor Drivers in Cancer.
    Koschmann C; Nunez FJ; Mendez F; Brosnan-Cashman JA; Meeker AK; Lowenstein PR; Castro MG
    Cancer Res; 2017 Jan; 77(2):227-233. PubMed ID: 28062403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossed wires: 3D genome misfolding in human disease.
    Norton HK; Phillips-Cremins JE
    J Cell Biol; 2017 Nov; 216(11):3441-3452. PubMed ID: 28855250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-of-origin chromatin organization shapes the mutational landscape of cancer.
    Polak P; Karlić R; Koren A; Thurman R; Sandstrom R; Lawrence M; Reynolds A; Rynes E; Vlahoviček K; Stamatoyannopoulos JA; Sunyaev SR
    Nature; 2015 Feb; 518(7539):360-364. PubMed ID: 25693567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.