These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 27762336)
1. Microfluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening. Mi S; Du Z; Xu Y; Wu Z; Qian X; Zhang M; Sun W Sci Rep; 2016 Oct; 6():35544. PubMed ID: 27762336 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic system for modelling 3D tumour invasion into surrounding stroma and drug screening. Du Z; Mi S; Yi X; Xu Y; Sun W Biofabrication; 2018 Jun; 10(3):034102. PubMed ID: 29786602 [TBL] [Abstract][Full Text] [Related]
3. Mesenchymal-mode migration assay and antimetastatic drug screening with high-throughput microfluidic channel networks. Zhang Y; Zhang W; Qin L Angew Chem Int Ed Engl; 2014 Feb; 53(9):2344-8. PubMed ID: 24478127 [TBL] [Abstract][Full Text] [Related]
4. A layered cancer-on-a-chip system for anticancer drug screening and disease modeling. Flont M; Dybko A; Jastrzębska E Analyst; 2023 Oct; 148(21):5486-5495. PubMed ID: 37768020 [TBL] [Abstract][Full Text] [Related]
5. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration. Lee JM; Seo HI; Bae JH; Chung BG Electrophoresis; 2017 May; 38(9-10):1318-1324. PubMed ID: 28169441 [TBL] [Abstract][Full Text] [Related]
6. A novel microfluidic model can mimic organ-specific metastasis of circulating tumor cells. Kong J; Luo Y; Jin D; An F; Zhang W; Liu L; Li J; Fang S; Li X; Yang X; Lin B; Liu T Oncotarget; 2016 Nov; 7(48):78421-78432. PubMed ID: 27191997 [TBL] [Abstract][Full Text] [Related]
7. Three dimensional multicellular co-cultures and anti-cancer drug assays in rapid prototyped multilevel microfluidic devices. Hwang H; Park J; Shin C; Do Y; Cho YK Biomed Microdevices; 2013 Aug; 15(4):627-634. PubMed ID: 23232700 [TBL] [Abstract][Full Text] [Related]
8. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Al-Samadi A; Poor B; Tuomainen K; Liu V; Hyytiäinen A; Suleymanova I; Mesimaki K; Wilkman T; Mäkitie A; Saavalainen P; Salo T Exp Cell Res; 2019 Oct; 383(2):111508. PubMed ID: 31356815 [TBL] [Abstract][Full Text] [Related]
9. THz Spectroscopy for a Rapid and Label-Free Cell Viability Assay in a Microfluidic Chip Based on an Optical Clearing Agent. Yang K; Yang X; Zhao X; Lamy de la Chapelle M; Fu W Anal Chem; 2019 Jan; 91(1):785-791. PubMed ID: 30335363 [TBL] [Abstract][Full Text] [Related]
10. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models. Virumbrales-Muñoz M; Ayuso JM; Olave M; Monge R; de Miguel D; Martínez-Lostao L; Le Gac S; Doblare M; Ochoa I; Fernandez LJ Sci Rep; 2017 Sep; 7(1):11998. PubMed ID: 28931839 [TBL] [Abstract][Full Text] [Related]
11. MDA-MB-231 Breast Cancer Cells and Their CSC Population Migrate Towards Low Oxygen in a Microfluidic Gradient Device. Sleeboom JJF; Toonder JMJD; Sahlgren CM Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30301222 [TBL] [Abstract][Full Text] [Related]
12. Establishing Single-Cell Based Co-Cultures in a Deterministic Manner with a Microfluidic Chip. He CK; Chen YW; Wang SH; Hsu CH J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609349 [TBL] [Abstract][Full Text] [Related]
13. Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Sabhachandani P; Motwani V; Cohen N; Sarkar S; Torchilin V; Konry T Lab Chip; 2016 Feb; 16(3):497-505. PubMed ID: 26686985 [TBL] [Abstract][Full Text] [Related]
14. Drug screening on digital microfluidics for cancer precision medicine. Zhai J; Liu Y; Ji W; Huang X; Wang P; Li Y; Li H; Wong AH; Zhou X; Chen P; Wang L; Yang N; Chen C; Chen H; Mak PI; Deng CX; Martins R; Yang M; Ho TY; Yi S; Yao H; Jia Y Nat Commun; 2024 May; 15(1):4363. PubMed ID: 38778087 [TBL] [Abstract][Full Text] [Related]
15. Single-cell RNA-sequencing of migratory breast cancer cells: discovering genes associated with cancer metastasis. Chen YC; Sahoo S; Brien R; Jung S; Humphries B; Lee W; Cheng YH; Zhang Z; Luker KE; Wicha MS; Luker GD; Yoon E Analyst; 2019 Dec; 144(24):7296-7309. PubMed ID: 31710321 [TBL] [Abstract][Full Text] [Related]
16. Matrigel coated polydimethylsiloxane based microfluidic devices for studying metastatic and non-metastatic cancer cell invasion and migration. Chaw KC; Manimaran M; Tay FE; Swaminathan S Biomed Microdevices; 2007 Aug; 9(4):597-602. PubMed ID: 17505887 [TBL] [Abstract][Full Text] [Related]
17. High-throughput analysis of cell-cell crosstalk in ad hoc designed microfluidic chips for oncoimmunology applications. Mencattini A; De Ninno A; Mancini J; Businaro L; Martinelli E; Schiavoni G; Mattei F Methods Enzymol; 2020; 632():479-502. PubMed ID: 32000911 [TBL] [Abstract][Full Text] [Related]
18. Multi-step microfluidic device for studying cancer metastasis. Chaw KC; Manimaran M; Tay EH; Swaminathan S Lab Chip; 2007 Aug; 7(8):1041-7. PubMed ID: 17653347 [TBL] [Abstract][Full Text] [Related]
19. Paper-supported co-culture system for dynamic investigations of the lung-tropic migration of breast cancer cells. Lin D; Chen X; Lin Z; Lin J; Liu Y; Liu D Biomed Mater; 2021 Feb; 16(2):025028. PubMed ID: 33075760 [TBL] [Abstract][Full Text] [Related]
20. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control. Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]