These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27762412)

  • 1. Slowing the translocation of single-stranded DNA by using nano-cylindrical passage self-assembled by amphiphilic block copolymers.
    Yoshida H; Goto Y; Akahori R; Tada Y; Terada S; Komura M; Iyoda T
    Nanoscale; 2016 Nov; 8(43):18270-18276. PubMed ID: 27762412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of solid-state nanopores for sticky-free translocation of single-stranded DNA.
    Tang Z; Lu B; Zhao Q; Wang J; Luo K; Yu D
    Small; 2014 Nov; 10(21):4332-9. PubMed ID: 25044955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon nitride nanopore created by dielectric breakdown with a divalent cation: deceleration of translocation speed and identification of single nucleotides.
    Goto Y; Matsui K; Yanagi I; Takeda KI
    Nanoscale; 2019 Aug; 11(30):14426-14433. PubMed ID: 31334729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA translocation through a nanopore in an ultrathin self-assembled peptide membrane.
    Yu JS; Lee J; Ju M; Cho OH; Kim HM; Nam KT; Kim KB
    Nanotechnology; 2019 May; 30(19):195602. PubMed ID: 30721897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure.
    Goto Y; Haga T; Yanagi I; Yokoi T; Takeda K
    Sci Rep; 2015 Nov; 5():16640. PubMed ID: 26559466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore.
    Chu J; González-López M; Cockroft SL; Amorin M; Ghadiri MR
    Angew Chem Int Ed Engl; 2010 Dec; 49(52):10106-9. PubMed ID: 21105031
    [No Abstract]   [Full Text] [Related]  

  • 8. Crowding-Induced DNA Translocation through a Protein Nanopore.
    Yao F; Peng X; Su Z; Tian L; Guo Y; Kang XF
    Anal Chem; 2020 Mar; 92(5):3827-3833. PubMed ID: 32048508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores.
    Ma J; Qiu Y; Yuan Z; Zhang Y; Sha J; Liu L; Sun L; Ni Z; Yi H; Li D; Chen Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022719. PubMed ID: 26382444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous Translocation of Single-Stranded DNA in Graphene-MoS
    Zou A; Xiu P; Ou X; Zhou R
    J Phys Chem B; 2020 Oct; 124(43):9490-9496. PubMed ID: 33064482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Stranded DNA Translocation Recordings through Solid-State Nanopores on Glass Chips at 10 MHz Measurement Bandwidth.
    Chien CC; Shekar S; Niedzwiecki DJ; Shepard KL; Drndić M
    ACS Nano; 2019 Sep; 13(9):10545-10554. PubMed ID: 31449393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.
    Huang S; Pang L; Chen Y; Zhou L; Fang S; Yu H
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700783. PubMed ID: 29399955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Single-Stranded DNA by Tuning the Graphene Nanogap Size: An Ionic Current Approach.
    Kumawat RL; Pathak B
    J Phys Chem B; 2022 Feb; 126(6):1178-1187. PubMed ID: 35108006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion.
    Akahori R; Yanagi I; Goto Y; Harada K; Yokoi T; Takeda KI
    Sci Rep; 2017 Aug; 7(1):9073. PubMed ID: 28831056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of single-stranded DNA homopolymers by sieving out G-quadruplex using tiny solid-state nanopores.
    Si W; Yang H; Sha J; Zhang Y; Chen Y
    Electrophoresis; 2019 Aug; 40(16-17):2117-2124. PubMed ID: 30779188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic Stepwise Translocation of Stretched ssDNA in Graphene Nanopores.
    Qiu H; Sarathy A; Leburton JP; Schulten K
    Nano Lett; 2015 Dec; 15(12):8322-30. PubMed ID: 26581231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer translocation through an electrically tunable nanopore in a multilayered semiconductor membrane.
    Melnikov DV; Nikolaev A; Leburton JP; Gracheva ME
    Methods Mol Biol; 2012; 870():187-207. PubMed ID: 22528265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA.
    Jou I; Muthukumar M
    Biophys J; 2017 Oct; 113(8):1664-1672. PubMed ID: 29045861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing and controlling the motion of ssDNA in a solid-state nanopore.
    Luan B; Martyna G; Stolovitzky G
    Biophys J; 2011 Nov; 101(9):2214-22. PubMed ID: 22067161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SSB binding to single-stranded DNA probed using solid-state nanopore sensors.
    Japrung D; Bahrami A; Nadzeyka A; Peto L; Bauerdick S; Edel JB; Albrecht T
    J Phys Chem B; 2014 Oct; 118(40):11605-12. PubMed ID: 25222770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.