BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27762464)

  • 1. Enzymatic Degradation of Oligo(ε-caprolactone)s End-Capped with Phenylboronic Acid Derivatives at the Air-Water Interface.
    Roßberg J; Rottke FO; Schulz B; Lendlein A
    Macromol Rapid Commun; 2016 Dec; 37(23):1966-1971. PubMed ID: 27762464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible 2D networks of oligo(ε-caprolactone) at the air-water interface.
    Saretia S; Machatschek R; Schulz B; Lendlein A
    Biomed Mater; 2019 Apr; 14(3):034103. PubMed ID: 30836335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers.
    Zeng J; Chen X; Liang Q; Xu X; Jing X
    Macromol Biosci; 2004 Dec; 4(12):1118-25. PubMed ID: 15586389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipase-catalyzed ring-opening copolymerization of ε-caprolactone and β-lactam.
    Stavila E; Alberda van Ekenstein GO; Woortman AJ; Loos K
    Biomacromolecules; 2014 Jan; 15(1):234-41. PubMed ID: 24294825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of a lipase-catalyzed copolymerization of epsilon-caprolactone and D,L-lactide.
    Wahlberg J; Persson PV; Olsson T; Hedenström E; Iversen T
    Biomacromolecules; 2003; 4(4):1068-71. PubMed ID: 12857093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.
    Kim HC; Lee H; Khetan J; Won YY
    Langmuir; 2015 Dec; 31(51):13821-33. PubMed ID: 26633595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkaline and enzymatic degradation of L-lactide copolymers, 1. Amorphous-made films of L-lactide copolymers with D-lactide, glycolide, and epsilon-caprolactone.
    Tsuji H; Tezuka Y
    Macromol Biosci; 2005 Feb; 5(2):135-48. PubMed ID: 15729721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, characterization, and degradation behavior of amphiphilic poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(epsilon-caprolactone).
    Miao ZM; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2005; 6(6):3449-57. PubMed ID: 16283778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled degradation of poly-ε-caprolactone for resorbable scaffolds.
    Hegyesi N; Hodosi E; Polyák P; Faludi G; Balogh-Weiser D; Pukánszky B
    Colloids Surf B Biointerfaces; 2020 Feb; 186():110678. PubMed ID: 31812078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic chain scission kinetics of poly(epsilon-caprolactone) monolayers.
    Kulkarni A; Reiche J; Kratz K; Kamusewitz H; Sokolov IM; Lendlein A
    Langmuir; 2007 Nov; 23(24):12202-7. PubMed ID: 17949018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of chemoenzymatic Baeyer-Villiger oxidation of cyclohexanone to ε-caprolactone using response surface methodology.
    Zhang Y; Jiang W; Lv K; Sun Y; Gao X; Zhao Q; Ren W; Wang F; Liu J
    Biotechnol Prog; 2020 Jan; 36(1):e2901. PubMed ID: 31465150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of lipase catalyzed ring-opening polymerization of epsilon-caprolactone.
    Sivalingam G; Madras G
    Biomacromolecules; 2004; 5(2):603-9. PubMed ID: 15003027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot lipase-catalyzed esterification of ε-caprolactone with methyl-d-glucopyranoside and its elongation with free 6-hydroxyhexanoate monomer units.
    Saat MN; Mohamad Annuar MS
    Biotechnol Appl Biochem; 2020 May; 67(3):354-365. PubMed ID: 31746015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brewster angle microscopy study of poly(epsilon-caprolactone) crystal growth in Langmuir films at the air/water interface.
    Li B; Wu Y; Liu M; Esker AR
    Langmuir; 2006 May; 22(11):4902-5. PubMed ID: 16700570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of pendant hydroxyl groups on enzymatic degradation and drug delivery of amphiphilic poly[glycidol-block-(epsilon-caprolactone)] copolymers.
    Mao J; Gan Z
    Macromol Biosci; 2009 Nov; 9(11):1080-9. PubMed ID: 19634151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds.
    Jeong SI; Kim BS; Lee YM; Ihn KJ; Kim SH; Kim YH
    Biomacromolecules; 2004; 5(4):1303-9. PubMed ID: 15244444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the drug release property of cholesteryl end-functionalized poly(epsilon-caprolactone) microspheres.
    Yu L; Zhang H; Cheng SX; Zhuo RX; Li H
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):39-46. PubMed ID: 16206259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the air-water interfacial properties of biodegradable polyesters and their block copolymers with poly(ethylene glycol).
    Park HW; Choi J; Ohn K; Lee H; Kim JW; Won YY
    Langmuir; 2012 Aug; 28(31):11555-66. PubMed ID: 22830444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biobased contents of biodegradable poly(epsilon-caprolactone) composites polymerized and directly molded using aluminium triflate from caprolactone with cellulose and inorganic filler.
    Kunioka M; Inuzuka Y; Ninomiya F; Funabashi M
    Macromol Biosci; 2006 Jul; 6(7):517-23. PubMed ID: 16832812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation behavior of poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles in aqueous solution.
    Hu Y; Zhang L; Cao Y; Ge H; Jiang X; Yang C
    Biomacromolecules; 2004; 5(5):1756-62. PubMed ID: 15360284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.