BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 27762641)

  • 21. Effects of locomotor training after incomplete spinal cord injury: a systematic review.
    Morawietz C; Moffat F
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2297-308. PubMed ID: 23850614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-intensity treadmill training improves gait ability, VO2peak and cost of walking in stroke survivors: preliminary results of a pilot randomized controlled trial.
    Munari D; Pedrinolla A; Smania N; Picelli A; Gandolfi M; Saltuari L; Schena F
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):408-418. PubMed ID: 27575015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of selectively assisting impaired subtasks of walking in chronic stroke survivors.
    Fricke SS; Smits HJG; Bayón C; Buurke JH; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2020 Oct; 17(1):143. PubMed ID: 33115480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics.
    Swinnen E; Baeyens JP; Knaepen K; Michielsen M; Hens G; Clijsen R; Goossens M; Buyl R; Meeusen R; Kerckhofs E
    Disabil Rehabil Assist Technol; 2015 May; 10(3):252-7. PubMed ID: 24512196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cardiorespiratory fitness and walking ability in subacute stroke patients.
    Kelly JO; Kilbreath SL; Davis GM; Zeman B; Raymond J
    Arch Phys Med Rehabil; 2003 Dec; 84(12):1780-5. PubMed ID: 14669183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: a preliminary report.
    Sale P; Russo EF; Russo M; Masiero S; Piccione F; Calabrò RS; Filoni S
    BMC Neurol; 2016 Jan; 16():12. PubMed ID: 26818847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults.
    Lee SH; Lee HJ; Chang WH; Choi BO; Lee J; Kim J; Ryu GH; Kim YH
    J Neuroeng Rehabil; 2017 Nov; 14(1):123. PubMed ID: 29183379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Cardiorespiratory Demands of Treadmill Walking with and without the Use of Ekso GT™ within Able-Bodied Participants: A Feasibility Study.
    Duddy D; Doherty R; Connolly J; Loughrey J; Condell J; Hassan D; Faulkner M
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiometabolic Challenges Provided by Variable Assisted Exoskeletal Versus Overground Walking in Chronic Motor-incomplete Paraplegia: A Case Series.
    Kressler J; Domingo A
    J Neurol Phys Ther; 2019 Apr; 43(2):128-135. PubMed ID: 30883500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study.
    Freivogel S; Mehrholz J; Husak-Sotomayor T; Schmalohr D
    Brain Inj; 2008 Jul; 22(7-8):625-32. PubMed ID: 18568717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exoskeleton plantarflexion assistance for elderly.
    Galle S; Derave W; Bossuyt F; Calders P; Malcolm P; De Clercq D
    Gait Posture; 2017 Feb; 52():183-188. PubMed ID: 27915222
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking.
    Kozlowski AJ; Bryce TN; Dijkers MP
    Top Spinal Cord Inj Rehabil; 2015; 21(2):110-21. PubMed ID: 26364280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review.
    Swinnen E; Duerinck S; Baeyens JP; Meeusen R; Kerckhofs E
    J Rehabil Med; 2010 Jun; 42(6):520-6. PubMed ID: 20549155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomechanics of Exoskeleton-Assisted Treadmill Walking.
    Di Tommaso F; Tamburella F; Lorusso M; Gastaldi L; Molinari M; Tagliamonte NL
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.
    Chen G; Chan CK; Guo Z; Yu H
    Crit Rev Biomed Eng; 2013; 41(4-5):343-63. PubMed ID: 24941413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Usability and acceptability of portable exoskeletons for gait training in subjects with spinal cord injury: a systematic review].
    Mardomingo-Medialdea H; Fernandez-Gonzalez P; Molina-Rueda F
    Rev Neurol; 2018 Jan; 66(2):35-44. PubMed ID: 29323399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: a randomized controlled study.
    Chang WH; Kim MS; Huh JP; Lee PK; Kim YH
    Neurorehabil Neural Repair; 2012 May; 26(4):318-24. PubMed ID: 22086903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.