These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 27763710)
1. Synthesis of Chemically Asymmetric Silica Nanobottles and Their Application for Cargo Loading and as Nanoreactors and Nanomotors. Yi D; Zhang Q; Liu Y; Song J; Tang Y; Caruso F; Wang Y Angew Chem Int Ed Engl; 2016 Nov; 55(47):14733-14737. PubMed ID: 27763710 [TBL] [Abstract][Full Text] [Related]
2. Controlled gold nanoparticle diffusion in nanotubes: Platfom of partial functionalization and gold capping. Son SJ; Lee SB J Am Chem Soc; 2006 Dec; 128(50):15974-5. PubMed ID: 17165716 [TBL] [Abstract][Full Text] [Related]
3. Catalysis-Driven Self-Thermophoresis of Janus Plasmonic Nanomotors. Qin W; Peng T; Gao Y; Wang F; Hu X; Wang K; Shi J; Li D; Ren J; Fan C Angew Chem Int Ed Engl; 2017 Jan; 56(2):515-518. PubMed ID: 27921355 [TBL] [Abstract][Full Text] [Related]
4. Dendritic Janus Nanomotors with Precisely Modulated Coverages and Their Effects on Propulsion. Xing Y; Pan Q; Du X; Xu T; He Y; Zhang X ACS Appl Mater Interfaces; 2019 Mar; 11(10):10426-10433. PubMed ID: 30785260 [TBL] [Abstract][Full Text] [Related]
5. Hemishell Zeolites Synthesized by Asymmetric Modification as Biphasic Nanoreactors with Tunable Amphiphilicity for Catalysis of Cascade Reactions. Jing W; Wang Y; Shi Z; Peng B; Luo J; Wang R; Qiu S; Zhang Z ACS Appl Mater Interfaces; 2020 Sep; 12(36):40684-40691. PubMed ID: 32805837 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of Efficient Hydrogenation Nanoreactors by Modifying the Freedom of Ultrasmall Platinum Nanoparticles within Yolk-Shell Nanospheres. Peng J; Lan G; Guo M; Wei X; Li C; Yang Q Chemistry; 2015 Jul; 21(29):10490-6. PubMed ID: 26094810 [TBL] [Abstract][Full Text] [Related]
7. Interfacial Superassembly of Light-Responsive Mechanism-Switchable Nanomotors with Tunable Mobility and Directionality. Liu T; Xie L; Zeng J; Yan M; Qiu B; Wang X; Zhou S; Zhang X; Zeng H; Liang Q; He Y; Liang K; Liu J; Velliou E; Jiang L; Kong B ACS Appl Mater Interfaces; 2022 Apr; 14(13):15517-15528. PubMed ID: 35323010 [TBL] [Abstract][Full Text] [Related]
8. Highly Active Nanoreactors: Patchlike or Thick Ni Coating on Pt Nanoparticles Based on Confined Catalysis. Qi X; Li X; Chen B; Lu H; Wang L; He G ACS Appl Mater Interfaces; 2016 Jan; 8(3):1922-8. PubMed ID: 26725500 [TBL] [Abstract][Full Text] [Related]
9. Massively Parallel Nanoparticle Synthesis in Anisotropic Nanoreactors. Jibril L; Chen PC; Hu J; Odom TW; Mirkin CA ACS Nano; 2019 Nov; 13(11):12408-12414. PubMed ID: 31613599 [TBL] [Abstract][Full Text] [Related]
10. Highly active nanoreactors: nanomaterial encapsulation based on confined catalysis. Sanlés-Sobrido M; Pérez-Lorenzo M; Rodríguez-González B; Salgueiriño V; Correa-Duarte MA Angew Chem Int Ed Engl; 2012 Apr; 51(16):3877-82. PubMed ID: 22307952 [TBL] [Abstract][Full Text] [Related]
11. Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. Ren X; Guo M; Li H; Li C; Yu L; Liu J; Yang Q Angew Chem Int Ed Engl; 2019 Oct; 58(41):14483-14488. PubMed ID: 31350802 [TBL] [Abstract][Full Text] [Related]
12. A novel non-aqueous sol-gel route for the in situ synthesis of high loaded silica-rubber nanocomposites. Wahba L; D'Arienzo M; Dirè S; Donetti R; Hanel T; Morazzoni F; Niederberger M; Santo N; Tadiello L; Scotti R Soft Matter; 2014 Apr; 10(13):2234-44. PubMed ID: 24651692 [TBL] [Abstract][Full Text] [Related]
13. Thin-walled SnO₂ nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules. Jang JS; Kim SJ; Choi SJ; Kim NH; Hakim M; Rothschild A; Kim ID Nanoscale; 2015 Oct; 7(39):16417-26. PubMed ID: 26395290 [TBL] [Abstract][Full Text] [Related]
14. Nanofabrication within unimolecular nanoreactors. Wang Y; Zhu X Nanoscale; 2020 Jun; 12(24):12698-12711. PubMed ID: 32525189 [TBL] [Abstract][Full Text] [Related]
15. Construction of dendritic Janus nanomotors with H Lv H; Xing Y; Du X; Xu T; Zhang X Soft Matter; 2020 Jun; 16(21):4961-4968. PubMed ID: 32432292 [TBL] [Abstract][Full Text] [Related]
16. Assembling nanostructures for effective catalysis: supported palladium nanoparticle multicores coated by a hollow and nanoporous zirconia shell. Wang Y; Biradar AV; Asefa T ChemSusChem; 2012 Jan; 5(1):132-9. PubMed ID: 22095642 [TBL] [Abstract][Full Text] [Related]
17. Mn-N-C Nanoreactor Prepared through Heating Metalloporphyrin Supported in Mesoporous Hollow Silica Spheres. Lin X; Fu L; Chen Y; Zhu R; Wang S; Liu Z ACS Appl Mater Interfaces; 2016 Oct; 8(40):26809-26816. PubMed ID: 27672699 [TBL] [Abstract][Full Text] [Related]
18. Site-Selective Superassembly of a Multilevel Asymmetric Nanomotor with Wavelength-Modulated Propulsion Mechanisms. Liu T; Yan M; Zhou S; Liang Q; He Y; Zhang X; Zeng H; Liu J; Kong B ACS Nano; 2023 Aug; 17(15):14871-14882. PubMed ID: 37498219 [TBL] [Abstract][Full Text] [Related]
19. Preparation of Magnetic Tubular Nanoreactors for Highly Efficient Catalysis. Yang S; Peng L; Cao C; Wei F; Liu J; Zhu YN; Liu C; Wang X; Song W Chem Asian J; 2016 Oct; 11(19):2797-2801. PubMed ID: 27123561 [TBL] [Abstract][Full Text] [Related]
20. Ultrafast light-activated polymeric nanomotors. Wang J; Wu H; Zhu X; Zwolsman R; Hofstraat SRJ; Li Y; Luo Y; Joosten RRM; Friedrich H; Cao S; Abdelmohsen LKEA; Shao J; van Hest JCM Nat Commun; 2024 Jun; 15(1):4878. PubMed ID: 38849362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]