These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27763731)

  • 1. Development of a Photoactivatable Phosphine Probe for Induction of Intracellular Reductive Stress with Single-Cell Precision.
    Tirla A; Rivera-Fuentes P
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14709-14712. PubMed ID: 27763731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of Intracellular Reductive Stress with a Photoactivatable Phosphine Probe.
    Tirla A; Rivera-Fuentes P
    Chimia (Aarau); 2018 Apr; 72(4):241-244. PubMed ID: 29720317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Photoactivated Fluorescent N-Hydroxyoxindoles and Their Application for Cell-Selective Imaging.
    Lai J; Yu A; Yang L; Zhang Y; Shah BP; Lee KB
    Chemistry; 2016 Apr; 22(18):6361-7. PubMed ID: 27004772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of photoactivatable azido-acyl caged oxazine fluorophores for live-cell imaging.
    Anzalone AV; Chen Z; Cornish VW
    Chem Commun (Camb); 2016 Jul; 52(60):9442-5. PubMed ID: 27377037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular thiols and photo-illumination sequentially activate doubly locked molecular probes for long-term cell highlighting and tracking with precise spatial accuracy.
    Lin Q; Du Z; Yang Y; Fang Q; Bao C; Yang Y; Zhu L
    Chemistry; 2014 Dec; 20(49):16314-9. PubMed ID: 25308070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Azide-specific labeling of biomolecules by Staudinger-Bertozzi ligation phosphine derivatives of fluorescent probes suitable for single-molecule fluorescence spectroscopy.
    Chakraborty A; Wang D; Ebright YW; Ebright RH
    Methods Enzymol; 2010; 472():19-30. PubMed ID: 20580957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrabright photoactivatable fluorophores created by reductive caging.
    Vaughan JC; Jia S; Zhuang X
    Nat Methods; 2012 Dec; 9(12):1181-4. PubMed ID: 23103881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of caged fluorescent nucleotides to live-cell RNA imaging.
    Okamoto A
    Methods Mol Biol; 2013; 1039():303-18. PubMed ID: 24026705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Site-Controlled and Lysosome-Targeted Intramolecular Charge Transfer-Photoinduced Electron Transfer-Fluorescence Resonance Energy Transfer Fluorescent Probe for Monitoring pH Changes in Living Cells.
    Dong B; Song X; Wang C; Kong X; Tang Y; Lin W
    Anal Chem; 2016 Apr; 88(7):4085-91. PubMed ID: 26987045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A selective phosphine-based fluorescent probe for nitroxyl in living cells.
    Miao Z; Reisz JA; Mitroka SM; Pan J; Xian M; King SB
    Bioorg Med Chem Lett; 2015 Jan; 25(1):16-9. PubMed ID: 25465170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Photoactivatable Probe for Super-Resolution Imaging of Enzymatic Activity in Live Cells.
    Halabi EA; Thiel Z; Trapp N; Pinotsi D; Rivera-Fuentes P
    J Am Chem Soc; 2017 Sep; 139(37):13200-13207. PubMed ID: 28820941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid miRNA imaging in cells using fluorogenic templated Staudinger reaction between PNA-based probes.
    Gorska K; Winssinger N
    Methods Mol Biol; 2014; 1050():179-92. PubMed ID: 24297360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid, photoactivatable turn-on fluorescent probes based on an intramolecular photoclick reaction.
    Yu Z; Ho LY; Lin Q
    J Am Chem Soc; 2011 Aug; 133(31):11912-5. PubMed ID: 21736329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoactivatable fluorophores for durable labelling of individual cells.
    Kashima H; Kamiya M; Obata F; Kojima R; Nakano S; Miura M; Urano Y
    Chem Commun (Camb); 2021 Jun; 57(47):5802-5805. PubMed ID: 33999073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrocyclization as an activation mechanism for organelle-specific live-cell imaging probes.
    Tran MN; Chenoweth DM
    Angew Chem Int Ed Engl; 2015 May; 54(22):6442-6. PubMed ID: 25950154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fast-response, highly sensitive and selective fluorescent probe for the ratiometric imaging of nitroxyl in living cells.
    Liu C; Wu H; Wang Z; Shao C; Zhu B; Zhang X
    Chem Commun (Camb); 2014 Jun; 50(45):6013-6. PubMed ID: 24770879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caging and Photoactivation in Single-Molecule Förster Resonance Energy Transfer Experiments.
    Jazi AA; Ploetz E; Arizki M; Dhandayuthapani B; Waclawska I; Krämer R; Ziegler C; Cordes T
    Biochemistry; 2017 Apr; 56(14):2031-2041. PubMed ID: 28362086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent phosphane selenide as efficient mercury chemodosimeter.
    Samb I; Bell J; Toullec PY; Michelet V; Leray I
    Org Lett; 2011 Mar; 13(5):1182-5. PubMed ID: 21306138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleic acid templated uncaging of fluorophores using Ru-catalyzed photoreduction with visible light.
    Röthlingshöfer M; Gorska K; Winssinger N
    Org Lett; 2012 Jan; 14(2):482-5. PubMed ID: 22206275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A photoactivatable Znsalen complex for super-resolution imaging of mitochondria in living cells.
    Tang J; Zhang M; Yin HY; Jing J; Xie D; Xu P; Zhang JL
    Chem Commun (Camb); 2016 Oct; 52(77):11583-6. PubMed ID: 27605151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.