BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 27763790)

  • 41. Thyroid fine needle aspiration biopsy: do nodule volume and cystic degeneration ratio affect specimen adequacy and cytological diagnosis time?
    Cengic I; Tureli D; Ozden F; Bugdayci O; Aydin H; Aribal E
    Acta Radiol; 2015 Oct; 56(10):1203-8. PubMed ID: 25344502
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) in lymph nodal and mediastinal lesions: a multicenter experience.
    Zeppa P; Barra E; Napolitano V; Cozzolino I; Troncone G; Picardi M; De Renzo A; Mainenti PP; Vetrani A; Palombini L
    Diagn Cytopathol; 2011 Oct; 39(10):723-9. PubMed ID: 20960473
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of endoscopic ultrasound fine-needle aspiration cytology by targeted next-generation sequencing and theranostic potential.
    Gleeson FC; Kipp BR; Kerr SE; Voss JS; Lazaridis KN; Katzka DA; Levy MJ
    Clin Gastroenterol Hepatol; 2015 Jan; 13(1):37-41. PubMed ID: 25424571
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Specimen acquisition: ROSEs, gardeners, and gatekeepers.
    Kraft AO
    Cancer Cytopathol; 2017 Jun; 125(S6):449-454. PubMed ID: 28608999
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of ultrasound-guided core biopsy versus fine-needle aspiration biopsy in the evaluation of salivary gland lesions.
    Douville NJ; Bradford CR
    Head Neck; 2013 Nov; 35(11):1657-61. PubMed ID: 23109044
    [TBL] [Abstract][Full Text] [Related]  

  • 46. EGFR and KRAS mutations in lung carcinoma: molecular testing by using cytology specimens.
    Billah S; Stewart J; Staerkel G; Chen S; Gong Y; Guo M
    Cancer Cytopathol; 2011 Apr; 119(2):111-7. PubMed ID: 21400670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The value of onsite adequacy assessment of thyroid fine-needle aspirations is a function of operator experience.
    Ghofrani M; Beckman D; Rimm DL
    Cancer; 2006 Apr; 108(2):110-3. PubMed ID: 16400635
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Telecytology for rapid assessment of cytological specimens.
    Kern I; Gabric S; Triller N; Pozek I
    J Telemed Telecare; 2012 Mar; 18(2):86-9. PubMed ID: 22186066
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular markers: Implications for cytopathology and specimen collection.
    VanderLaan PA
    Cancer Cytopathol; 2015 Aug; 123(8):454-60. PubMed ID: 25964216
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Role of Next-Generation Sequencing in the Cytologic Diagnosis of Pancreatic Lesions.
    de Biase D; Visani M; Acquaviva G; Fornelli A; Masetti M; Fabbri C; Pession A; Tallini G
    Arch Pathol Lab Med; 2018 Apr; 142(4):458-464. PubMed ID: 29565213
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preanalytic Variables in Cytology: Lessons Learned From Next-Generation Sequencing-The MD Anderson Experience.
    Roy-Chowdhuri S; Stewart J
    Arch Pathol Lab Med; 2016 Nov; 140(11):1191-1199. PubMed ID: 27333361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cost-effectiveness of immediate specimen adequacy assessment of thyroid fine-needle aspirations.
    Eedes CR; Wang HH
    Am J Clin Pathol; 2004 Jan; 121(1):64-9. PubMed ID: 14750242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increase of core biopsies in visceral organs--experience at one institution.
    Gupta NJ; Wang HH
    Diagn Cytopathol; 2011 Nov; 39(11):791-5. PubMed ID: 20960472
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Factors affecting the success of next-generation sequencing in cytology specimens.
    Roy-Chowdhuri S; Goswami RS; Chen H; Patel KP; Routbort MJ; Singh RR; Broaddus RR; Barkoh BA; Manekia J; Yao H; Medeiros LJ; Staerkel G; Luthra R; Stewart J
    Cancer Cytopathol; 2015 Nov; 123(11):659-68. PubMed ID: 26230354
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clinical validation of the 50 gene AmpliSeq Cancer Panel V2 for use on a next generation sequencing platform using formalin fixed, paraffin embedded and fine needle aspiration tumour specimens.
    Rathi V; Wright G; Constantin D; Chang S; Pham H; Jones K; Palios A; Mclachlan SA; Conron M; McKelvie P; Williams R
    Pathology; 2017 Jan; 49(1):75-82. PubMed ID: 27913044
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neck lump clinics: is on-site assessment of fine needle aspirate diagnostic adequacy cost-effective?
    Burgess C; Dias L; Maughan E; Moorthy R
    J Laryngol Otol; 2013 Nov; 127(11):1122-6. PubMed ID: 24131944
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of cytology centrifuged supernatants improves cost and turnaround time for targeted next generation sequencing.
    Gokozan H; Harbhajanka A; Bomeisl P; Michael CW; Sadri N
    Diagn Cytopathol; 2020 Dec; 48(12):1167-1172. PubMed ID: 32697040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics.
    Hoang NS; Ge BH; Pan LY; Ozawa MG; Kong CS; Louie JD; Shah RP
    Cardiovasc Intervent Radiol; 2018 Mar; 41(3):489-495. PubMed ID: 29279975
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A single EBUS-TBNA procedure can support a large panel of immunohistochemical stains, specific diagnostic subtyping, and multiple gene analyses in the majority of non-small cell lung cancer cases.
    Rooper LM; Nikolskaia O; Carter J; Ning Y; Lin MT; Maleki Z
    Hum Pathol; 2016 May; 51():139-45. PubMed ID: 26980023
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thyroid fine needle aspiration cytology processed by ThinPrep: an additional slide decreased the number of inadequate results.
    Rossi ED; Morassi F; Santeusanio G; Zannoni GF; Fadda G
    Cytopathology; 2010 Apr; 21(2):97-102. PubMed ID: 20132131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.