BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 27764097)

  • 21. Revisit of Reconstituted 30-nm Nucleosome Arrays Reveals an Ensemble of Dynamic Structures.
    Zhou BR; Jiang J; Ghirlando R; Norouzi D; Sathish Yadav KN; Feng H; Wang R; Zhang P; Zhurkin V; Bai Y
    J Mol Biol; 2018 Sep; 430(18 Pt B):3093-3110. PubMed ID: 29959925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleosome and chromatin fiber dynamics.
    Luger K; Hansen JC
    Curr Opin Struct Biol; 2005 Apr; 15(2):188-96. PubMed ID: 15837178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Geometrical Heterogeneity Dominates Thermal Fluctuations in Facilitating Chromatin Contacts.
    Beltran B; Kannan D; MacPherson Q; Spakowitz AJ
    Phys Rev Lett; 2019 Nov; 123(20):208103. PubMed ID: 31809067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational modeling of the chromatin fiber.
    Langowski J; Heermann DW
    Semin Cell Dev Biol; 2007 Oct; 18(5):659-67. PubMed ID: 17936653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context.
    Tanaka S; Livingstone-Zatchej M; Thoma F
    J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing.
    Yang JG; Madrid TS; Sevastopoulos E; Narlikar GJ
    Nat Struct Mol Biol; 2006 Dec; 13(12):1078-83. PubMed ID: 17099699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Keeping fingers crossed: heterochromatin spreading through interdigitation of nucleosome arrays.
    Grigoryev SA
    FEBS Lett; 2004 Apr; 564(1-2):4-8. PubMed ID: 15094034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linking Chromatin Fibers to Gene Folding by Hierarchical Looping.
    Bascom G; Schlick T
    Biophys J; 2017 Feb; 112(3):434-445. PubMed ID: 28153411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleosome conformational flexibility and implications for chromatin dynamics.
    Sivolob A; Prunell A
    Philos Trans A Math Phys Eng Sci; 2004 Jul; 362(1820):1519-47. PubMed ID: 15306464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nucleosome repeat lengths and columnar chromatin structure.
    Trifonov EN
    J Biomol Struct Dyn; 2016 Jun; 34(6):1156-8. PubMed ID: 26208520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleosome Dynamics: a new tool for the dynamic analysis of nucleosome positioning.
    Buitrago D; Codó L; Illa R; de Jorge P; Battistini F; Flores O; Bayarri G; Royo R; Del Pino M; Heath S; Hospital A; Gelpí JL; Heath IB; Orozco M
    Nucleic Acids Res; 2019 Oct; 47(18):9511-9523. PubMed ID: 31504766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asymmetric nucleosomes flank promoters in the budding yeast genome.
    Ramachandran S; Zentner GE; Henikoff S
    Genome Res; 2015 Mar; 25(3):381-90. PubMed ID: 25491770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA translocation and nucleosome remodeling assays by the RSC chromatin remodeling complex.
    Wittmeyer J; Saha A; Cairns B
    Methods Enzymol; 2004; 377():322-43. PubMed ID: 14979035
    [No Abstract]   [Full Text] [Related]  

  • 34. Stochastic description of single nucleosome repositioning by ACF remodelers.
    Vandecan Y; Blossey R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061920. PubMed ID: 23005140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin behavior in living cells: Lessons from single-nucleosome imaging and tracking.
    Ide S; Tamura S; Maeshima K
    Bioessays; 2022 Jul; 44(7):e2200043. PubMed ID: 35661389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.
    Drillon G; Audit B; Argoul F; Arneodo A
    J Phys Condens Matter; 2015 Feb; 27(6):064102. PubMed ID: 25563930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inferring natural selection on fine-scale chromatin organization in yeast.
    Babbitt GA; Kim Y
    Mol Biol Evol; 2008 Aug; 25(8):1714-27. PubMed ID: 18515262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin under mechanical stress: from single 30 nm fibers to single nucleosomes.
    Bednar J; Dimitrov S
    FEBS J; 2011 Jul; 278(13):2231-43. PubMed ID: 21535477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Higher-order folding of heterochromatin: protein bridges span the nucleosome arrays.
    Grigoryev SA
    Biochem Cell Biol; 2001; 79(3):227-41. PubMed ID: 11467737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Behaviors of nucleosomes with mutant histone H4s in euchromatic domains of living human cells.
    Semeigazin A; Iida S; Minami K; Tamura S; Ide S; Higashi K; Toyoda A; Kurokawa K; Maeshima K
    Histochem Cell Biol; 2024 May; ():. PubMed ID: 38743310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.