These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27764552)

  • 1. Molecular and functional characterization of cry1Ac transgenic pea lines.
    Teressa Negawo A; Baranek L; Jacobsen HJ; Hassan F
    GM Crops Food; 2016 Oct; 7(3-4):159-174. PubMed ID: 27764552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of Cry1Ac in transgenic tobacco plants under the control of a wound-inducible promoter (AoPR1) isolated from Asparagus officinalis to control Heliothis virescens and Manduca sexta.
    Gulbitti-Onarici S; Zaidi MA; Taga I; Ozcan S; Altosaar I
    Mol Biotechnol; 2009 Jul; 42(3):341-9. PubMed ID: 19353306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory evaluation of transgenic Populus davidiana×Populus bolleana expressing Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3 genes against gypsy moth and fall webworm.
    Ding L; Chen Y; Wei X; Ni M; Zhang J; Wang H; Zhu Z; Wei J
    PLoS One; 2017; 12(6):e0178754. PubMed ID: 28582405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of Cry1Ac in transgenic Bt soybean lines and their efficiency in controlling lepidopteran pests.
    Yu H; Li Y; Li X; Romeis J; Wu K
    Pest Manag Sci; 2013 Dec; 69(12):1326-33. PubMed ID: 23564718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene.
    Narendran M; Deole SG; Harkude S; Shirale D; Nanote A; Bihani P; Parimi S; Char BR; Zehr UB
    Plant Cell Rep; 2013 Aug; 32(8):1191-8. PubMed ID: 23504006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes.
    Yang Z; Chen H; Tang W; Hua H; Lin Y
    Pest Manag Sci; 2011 Apr; 67(4):414-22. PubMed ID: 21394874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials.
    Weng LX; Deng HH; Xu JL; Li Q; Zhang YQ; Jiang ZD; Li QW; Chen JW; Zhang LH
    Transgenic Res; 2011 Aug; 20(4):759-72. PubMed ID: 21046242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High levels of biological activity of Cry1Ac protein expressed on MON 87701 × MON 89788 soybean against Heliothis virescens (Lepidoptera:Noctuidae).
    Bernardi O; Dourado PM; Carvalho RA; Martinelli S; Berger GU; Head GP; Omoto C
    Pest Manag Sci; 2014 Apr; 70(4):588-94. PubMed ID: 23687086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of modified Cry1Ac for the control of resistant insect pest of cotton, Pectinophora gossypiella.
    Anees Siddiqui H; Asif M; Zahra Naqvi R; Shehzad A; Sarwar M; Amin I; Mansoor S
    Gene; 2023 Mar; 856():147113. PubMed ID: 36543309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cis-acting motifs in artificially synthesized expression cassette leads to enhanced transgene expression in tomato (Solanum lycopersicum L.).
    Koul B; Yadav R; Sanyal I; Sawant S; Sharma V; Amla DV
    Plant Physiol Biochem; 2012 Dec; 61():131-41. PubMed ID: 23137727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of transgenic rice expressing Cry1Ac and CpTI against the rice leaffolder, Cnaphalocrocis medinalis (Guenée).
    Han L; Wu K; Peng Y; Wang F; Guo Y
    J Invertebr Pathol; 2007 Sep; 96(1):71-9. PubMed ID: 17445827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae.
    Cao J; Shelton AM; Earle ED
    Plant Cell Rep; 2008 Mar; 27(3):479-87. PubMed ID: 17989981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of double gene transgenic cotton lines expressing Cry toxins for protection against chewing insect pests.
    Siddiqui HA; Asif M; Asad S; Naqvi RZ; Ajaz S; Umer N; Anjum N; Rauf I; Sarwar M; Arshad M; Amin I; Saeed M; Mukhtar Z; Bashir A; Mansoor S
    Sci Rep; 2019 Aug; 9(1):11774. PubMed ID: 31409859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chromosome-level genome assembly of the soybean pod borer: insights into larval transcriptional response to transgenic soybean expressing the pesticidal Cry1Ac protein.
    Wang Y; Yao Y; Zhang Y; Qian X; Guo D; Coates BS
    BMC Genomics; 2024 Apr; 25(1):355. PubMed ID: 38594617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity and characterization of cotton expressing Bacillus thuringiensis Cry1Ac and Cry2Ab2 proteins for control of lepidopteran pests.
    Sivasupramaniam S; Moar WJ; Ruschke LG; Osborn JA; Jiang C; Sebaugh JL; Brown GR; Shappley ZW; Oppenhuizen ME; Mullins JW; Greenplate JT
    J Econ Entomol; 2008 Apr; 101(2):546-54. PubMed ID: 18459423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of hybrid fusion protein (Cry1Ac::ASAL) in transgenic rice plants imparts resistance against multiple insect pests.
    Boddupally D; Tamirisa S; Gundra SR; Vudem DR; Khareedu VR
    Sci Rep; 2018 May; 8(1):8458. PubMed ID: 29855556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants.
    Mehrotra M; Sanyal I; Amla DV
    Plant Cell Rep; 2011 Sep; 30(9):1603-16. PubMed ID: 21516347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-resistance responses of CrylAc-selected Heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis protein vip3A.
    Jackson RE; Marcus MA; Gould F; Bradley JR; Van Duyn JW
    J Econ Entomol; 2007 Feb; 100(1):180-6. PubMed ID: 17370826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foreign cry1Ac gene integration and endogenous borer stress-related genes synergistically improve insect resistance in sugarcane.
    Zhou D; Liu X; Gao S; Guo J; Su Y; Ling H; Wang C; Li Z; Xu L; Que Y
    BMC Plant Biol; 2018 Dec; 18(1):342. PubMed ID: 30526526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insect-resistant transgenic Pinus radiata.
    Grace LJ; Charity JA; Gresham B; Kay N; Walter C
    Plant Cell Rep; 2005 May; 24(2):103-11. PubMed ID: 15668791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.