BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27764665)

  • 1. Non-canonical Signaling, the Hidden Life of Ligand-Gated Ion Channels.
    Valbuena S; Lerma J
    Neuron; 2016 Oct; 92(2):316-329. PubMed ID: 27764665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert.
    Reiner A; Levitz J
    Neuron; 2018 Jun; 98(6):1080-1098. PubMed ID: 29953871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated modulation of cellular signaling through ligand-gated ion channels in Hydra vulgaris (Cnidaria, Hydrozoa).
    Pierobon P
    Int J Dev Biol; 2012; 56(6-8):551-65. PubMed ID: 22689363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors.
    Chávez AE; Singer JH; Diamond JS
    Nature; 2006 Oct; 443(7112):705-8. PubMed ID: 17036006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential.
    Reiner A; Levitz J; Isacoff EY
    Curr Opin Pharmacol; 2015 Feb; 20():135-43. PubMed ID: 25573450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching of the transmitters that mediate hindbrain correlated activity in the chick embryo.
    Mochida H; Sato K; Momose-Sato Y
    Eur J Neurosci; 2009 Jan; 29(1):14-30. PubMed ID: 19087161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging structural insights into the function of ionotropic glutamate receptors.
    Karakas E; Regan MC; Furukawa H
    Trends Biochem Sci; 2015 Jun; 40(6):328-37. PubMed ID: 25941168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrin receptors and ligand-gated channels.
    Morini R; Becchetti A
    Adv Exp Med Biol; 2010; 674():95-105. PubMed ID: 20549943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orexins/hypocretins cause sharp wave- and theta-related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling.
    Selbach O; Doreulee N; Bohla C; Eriksson KS; Sergeeva OA; Poelchen W; Brown RE; Haas HL
    Neuroscience; 2004; 127(2):519-28. PubMed ID: 15262340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GARLH Family Proteins Stabilize GABA
    Yamasaki T; Hoyos-Ramirez E; Martenson JS; Morimoto-Tomita M; Tomita S
    Neuron; 2017 Mar; 93(5):1138-1152.e6. PubMed ID: 28279354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic nicotinic acetylcholine receptors enhance GABAergic synaptic transmission in rat periaqueductal gray neurons.
    Nakamura M; Jang IS
    Eur J Pharmacol; 2010 Aug; 640(1-3):178-84. PubMed ID: 20465999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional regulations for glutamate and GABA release in the hippocampus by alpha7 and non-alpha7 ACh receptors.
    Kanno T; Yaguchi T; Yamamoto S; Nagata T; Yamamoto H; Fujikawa H; Nishizaki T
    Biochem Biophys Res Commun; 2005 Dec; 338(2):742-7. PubMed ID: 16256940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material.
    Ryglewski S; Vonhoff F; Scheckel K; Duch C
    Neuron; 2017 Feb; 93(3):632-645.e6. PubMed ID: 28132832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptically-silent immature neurons show gaba and glutamate receptor-mediated currents in adult rat dentate gyrus.
    Ambrogini P; Minelli A; Lattanzi D; Ciuffoli S; Fanelli M; Cuppini R
    Arch Ital Biol; 2006 May; 144(2):115-26. PubMed ID: 16642790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kainate receptors and RNA editing in cholinergic neurons.
    Olsen DP; Dunlap K; Jacob MH
    J Neurochem; 2007 Apr; 101(2):327-41. PubMed ID: 17241235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabotropic glutamate receptors modulate glutamatergic and GABAergic synaptic transmission in the central nucleus of the inferior colliculus.
    Farazifard R; Wu SH
    Brain Res; 2010 Apr; 1325():28-40. PubMed ID: 20153735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional implications of neurotransmitter co-release: glutamate and GABA share the load.
    Seal RP; Edwards RH
    Curr Opin Pharmacol; 2006 Feb; 6(1):114-9. PubMed ID: 16359920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors.
    Gou ZH; Wang X; Wang W
    Dongwuxue Yanjiu; 2012 Dec; 33(E5-6):E75-81. PubMed ID: 23266985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic ionotropic receptors and the control of transmitter release.
    MacDermott AB; Role LW; Siegelbaum SA
    Annu Rev Neurosci; 1999; 22():443-85. PubMed ID: 10202545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic analyses of gas (nitric oxide and carbon monoxide) and small molecule transmitter (acetylcholine, glutamate and GABA) signaling systems in Daphnia pulex.
    McCoole MD; D'Andrea BT; Baer KN; Christie AE
    Comp Biochem Physiol Part D Genomics Proteomics; 2012 Jun; 7(2):124-60. PubMed ID: 22305610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.