These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 27764698)

  • 1. Metabolic Alterations Caused by KRAS Mutations in Colorectal Cancer Contribute to Cell Adaptation to Glutamine Depletion by Upregulation of Asparagine Synthetase.
    Toda K; Kawada K; Iwamoto M; Inamoto S; Sasazuki T; Shirasawa S; Hasegawa S; Sakai Y
    Neoplasia; 2016 Nov; 18(11):654-665. PubMed ID: 27764698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Asparagine Synthetase in Tumorgenicity Using Patient-Derived Tumor-Initiating Cells.
    Nishikawa G; Kawada K; Hanada K; Maekawa H; Itatani Y; Miyoshi H; Taketo MM; Obama K
    Cells; 2022 Oct; 11(20):. PubMed ID: 36291140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual blockade of macropinocytosis and asparagine bioavailability shows synergistic anti-tumor effects on KRAS-mutant colorectal cancer.
    Hanada K; Kawada K; Nishikawa G; Toda K; Maekawa H; Nishikawa Y; Masui H; Hirata W; Okamoto M; Kiyasu Y; Honma S; Ogawa R; Mizuno R; Itatani Y; Miyoshi H; Sasazuki T; Shirasawa S; Taketo MM; Obama K; Sakai Y
    Cancer Lett; 2021 Dec; 522():129-141. PubMed ID: 34543685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance to dual blockade of the kinases PI3K and mTOR in KRAS-mutant colorectal cancer models results in combined sensitivity to inhibition of the receptor tyrosine kinase EGFR.
    Belmont PJ; Jiang P; McKee TD; Xie T; Isaacson J; Baryla NE; Roper J; Sinnamon MJ; Lee NV; Kan JL; Guicherit O; Wouters BG; O'Brien CA; Shields D; Olson P; VanArsdale T; Weinrich SL; Rejto P; Christensen JG; Fantin VR; Hung KE; Martin ES
    Sci Signal; 2014 Nov; 7(351):ra107. PubMed ID: 25389372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncogenic KRAS Regulates Amino Acid Homeostasis and Asparagine Biosynthesis via ATF4 and Alters Sensitivity to L-Asparaginase.
    Gwinn DM; Lee AG; Briones-Martin-Del-Campo M; Conn CS; Simpson DR; Scott AI; Le A; Cowan TM; Ruggero D; Sweet-Cordero EA
    Cancer Cell; 2018 Jan; 33(1):91-107.e6. PubMed ID: 29316436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promising Therapeutic Efficacy of GC1118, an Anti-EGFR Antibody, against KRAS Mutation-Driven Colorectal Cancer Patient-Derived Xenografts.
    Lee HW; Son E; Lee K; Lee Y; Kim Y; Lee JC; Lim Y; Hur M; Kim D; Nam DH
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31771279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate.
    Wong CC; Qian Y; Li X; Xu J; Kang W; Tong JH; To KF; Jin Y; Li W; Chen H; Go MY; Wu JL; Cheng KW; Ng SS; Sung JJ; Cai Z; Yu J
    Gastroenterology; 2016 Nov; 151(5):945-960.e6. PubMed ID: 27451147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HSP27 expression in primary colorectal cancers is dependent on mutation of KRAS and PI3K/AKT activation status and is independent of TP53.
    Ghosh A; Lai C; McDonald S; Suraweera N; Sengupta N; Propper D; Dorudi S; Silver A
    Exp Mol Pathol; 2013 Feb; 94(1):103-8. PubMed ID: 22982087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers.
    Ebi H; Corcoran RB; Singh A; Chen Z; Song Y; Lifshits E; Ryan DP; Meyerhardt JA; Benes C; Settleman J; Wong KK; Cantley LC; Engelman JA
    J Clin Invest; 2011 Nov; 121(11):4311-21. PubMed ID: 21985784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination therapy with zoledronic acid and cetuximab effectively suppresses growth of colorectal cancer cells regardless of KRAS status.
    Kato J; Futamura M; Kanematsu M; Gaowa S; Mori R; Tanahashi T; Matsuhashi N; Yoshida K
    Int J Cancer; 2016 Mar; 138(6):1516-27. PubMed ID: 26437179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistent mutations of KRAS and PIK3CA affect the efficacy of NVP-BEZ235, a dual PI3K/MTOR inhibitor, in regulating the PI3K/MTOR pathway in colorectal cancer.
    Kim A; Lee JE; Lee SS; Kim C; Lee SJ; Jang WS; Park S
    Int J Cancer; 2013 Aug; 133(4):984-96. PubMed ID: 23475782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth characteristics of HCT116 xenografts lacking asparagine synthetase vary according to sex.
    Aladelokun O; Lu L; Zheng J; Yan H; Jain A; Gibson J; Khan SA; Johnson CH
    Hum Genomics; 2024 Jun; 18(1):67. PubMed ID: 38886847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical Role of ASCT2 (SLC1A5) in KRAS-Mutated Colorectal Cancer.
    Toda K; Nishikawa G; Iwamoto M; Itatani Y; Takahashi R; Sakai Y; Kawada K
    Int J Mol Sci; 2017 Jul; 18(8):. PubMed ID: 28749408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IMPDH2 promotes colorectal cancer progression through activation of the PI3K/AKT/mTOR and PI3K/AKT/FOXO1 signaling pathways.
    Duan S; Huang W; Liu X; Liu X; Chen N; Xu Q; Hu Y; Song W; Zhou J
    J Exp Clin Cancer Res; 2018 Dec; 37(1):304. PubMed ID: 30518405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of 18F-FDG accumulation in colorectal cancer cells with mutated KRAS.
    Iwamoto M; Kawada K; Nakamoto Y; Itatani Y; Inamoto S; Toda K; Kimura H; Sasazuki T; Shirasawa S; Okuyama H; Inoue M; Hasegawa S; Togashi K; Sakai Y
    J Nucl Med; 2014 Dec; 55(12):2038-44. PubMed ID: 25453050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SOX12 promotes colorectal cancer cell proliferation and metastasis by regulating asparagine synthesis.
    Du F; Chen J; Liu H; Cai Y; Cao T; Han W; Yi X; Qian M; Tian D; Nie Y; Wu K; Fan D; Xia L
    Cell Death Dis; 2019 Mar; 10(3):239. PubMed ID: 30858360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorafenib enhances the therapeutic efficacy of rapamycin in colorectal cancers harboring oncogenic KRAS and PIK3CA.
    Gulhati P; Zaytseva YY; Valentino JD; Stevens PD; Kim JT; Sasazuki T; Shirasawa S; Lee EY; Weiss HL; Dong J; Gao T; Evers BM
    Carcinogenesis; 2012 Sep; 33(9):1782-90. PubMed ID: 22696593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activated cMET and IGF1R-driven PI3K signaling predicts poor survival in colorectal cancers independent of KRAS mutational status.
    Lee J; Jain A; Kim P; Lee T; Kuller A; Princen F; In-GuDo ; Kim SH; Park JO; Park YS; Singh S; Kim HC
    PLoS One; 2014; 9(8):e103551. PubMed ID: 25090459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quadruple-editing of the MAPK and PI3K pathways effectively blocks the progression of KRAS-mutated colorectal cancer cells.
    Wang Z; Kang B; Gao Q; Huang L; Di J; Fan Y; Yu J; Jiang B; Gao F; Wang D; Sun H; Gu Y; Li J; Su X
    Cancer Sci; 2021 Sep; 112(9):3895-3910. PubMed ID: 34185934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asparagine synthetase and G-protein coupled estrogen receptor are critical responders to nutrient supply in
    Lu L; Zhang Q; Shen X; Zhen P; Marin A; Garcia-Milian R; Roper J; Khan SA; Johnson CH
    bioRxiv; 2023 May; ():. PubMed ID: 37205388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.