These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 2776472)

  • 1. Effect of cell age on the quenching of erythrocyte membrane protein fluorescence.
    Grzelinska E; Bartosz G
    Cytobios; 1989; 57(230-231):149-54. PubMed ID: 2776472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane self-digestion during erythrocyte storage.
    Gaczyńska M; Bartosz G; Rosin J
    Cytobios; 1989; 57(229):87-92. PubMed ID: 2673667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The eosin-5-maleimide binding site on human erythrocyte band 3: investigation of membrane sidedness and location of charged residues by triplet state quenching.
    Pan RJ; Cherry RJ
    Biochemistry; 1998 Jul; 37(28):10238-45. PubMed ID: 9665731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence quenching studies of the rat ovarian LH/hCG receptor.
    Scsuková S; Jezová M; Vranová J; Tatara M; Kolena J
    Gen Physiol Biophys; 1996 Dec; 15(6):451-62. PubMed ID: 9248831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonpolar environment of tryptophans in erythrocyte water channel CHIP28 determined by fluorescence quenching.
    Farinas J; Van Hoek AN; Shi LB; Erickson C; Verkman AS
    Biochemistry; 1993 Nov; 32(44):11857-64. PubMed ID: 8218257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acrylamide quenching of apo- and holo-alpha-lactalbumin in guanidine hydrochloride.
    France RM; Grossman SH
    Biochem Biophys Res Commun; 2000 Mar; 269(3):709-12. PubMed ID: 10720481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence energy transfer on erythrocyte membranes.
    Fuchs HM; Hof M; Mudogo V; Lawaczeck R
    Gen Physiol Biophys; 1997 Mar; 16(1):15-28. PubMed ID: 9290940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophanyl substitutions in apomyoglobin affect conformation and dynamic properties of AGH subdomain.
    Sirangelo I; Iannuzzi C; Malmo C; Irace G
    Biopolymers; 2003 Dec; 70(4):649-54. PubMed ID: 14648775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Radiation-induced changes in the structure of erythrocyte membrane proteins].
    Dreval' VI; Sichevskaia LV; Doroshenko AO; Roshal' AD
    Biofizika; 2000; 45(5):836-8. PubMed ID: 11094709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide diffusion in membranes determined by fluorescence quenching.
    Denicola A; Souza JM; Radi R; Lissi E
    Arch Biochem Biophys; 1996 Apr; 328(1):208-12. PubMed ID: 8638932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of trifluoperazine on the conformation and dynamics of membrane proteins in human erythrocytes.
    Ruggiero AC; Meirelles NC
    Mol Genet Metab; 1998 Jun; 64(2):148-51. PubMed ID: 9705239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The effect of a structural modification in the membrane proteins on the lipid-protein interaction in human erythrocyte membranes].
    Gorbunov NV
    Biull Eksp Biol Med; 1993 Nov; 116(11):488-91. PubMed ID: 8312536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change.
    Weitzman C; Consler TG; Kaback HR
    Protein Sci; 1995 Nov; 4(11):2310-8. PubMed ID: 8563627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does diabetes mellitus affect diphenylhexatriene penetration into erythrocyte membrane ghosts?
    Watała C; Jóźwiak Z
    Biochem Int; 1988 Mar; 16(3):529-41. PubMed ID: 3382422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Conformation of adenosine deaminase in complexes with inhibitors: application of selective quenching of fluorescence emission].
    Vermishian IG; Sharoian SG; Antonian AA; Grigorian NA; Mardanian SS; Khoetsian AV; Markarian ShA
    Biofizika; 2008; 53(2):213-21. PubMed ID: 18543763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Content of intracellular ATP and structural state of proteins in the erythrocyte membrane].
    Slobozhanina EI; Chernitskiĭ EA; Koslova NM
    Biofizika; 1982; 27(3):425-9. PubMed ID: 7093324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins.
    Phillips SR; Wilson LJ; Borkman RF
    Curr Eye Res; 1986 Aug; 5(8):611-9. PubMed ID: 3757547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-dependent quenching of tryptophan fluorescence in human erythrocyte hexose transport protein.
    Pawagi AB; Deber CM
    Biochemistry; 1990 Jan; 29(4):950-5. PubMed ID: 2340286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of lipid-protein interactions in mitochondrial membranes using the intrinsic fluorescence of tryptophan].
    Falcioni AM; Ferretti G; Fiorini RM; Curatola G
    Boll Soc Ital Biol Sper; 1980 Dec; 56(23):2414-20. PubMed ID: 7470284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence quenching as an indicator for the exposure of tryptophyl residues in Streptomyces subtilisin inhibitor.
    Komiyama T; Miwa M
    J Biochem; 1980 Apr; 87(4):1029-36. PubMed ID: 6993454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.