These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 27765071)
21. Arctic canopy photosynthetic efficiency enhanced under diffuse light, linked to a reduction in the fraction of the canopy in deep shade. Williams M; Rastetter EB; Van der Pol L; Shaver GR New Phytol; 2014 Jun; 202(4):1267-1276. PubMed ID: 24593320 [TBL] [Abstract][Full Text] [Related]
22. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Katul G; Manzoni S; Palmroth S; Oren R Ann Bot; 2010 Mar; 105(3):431-42. PubMed ID: 19995810 [TBL] [Abstract][Full Text] [Related]
23. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040 [TBL] [Abstract][Full Text] [Related]
24. Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines. Rogiers SY; Clarke SJ Ann Bot; 2013 Mar; 111(3):433-44. PubMed ID: 23293018 [TBL] [Abstract][Full Text] [Related]
25. Simulations and observations of patchy stomatal behavior in leaves of Quercus crispula, a cool-temperate deciduous broad-leaved tree species. Kamakura M; Kosugi Y; Muramatsu K; Muraoka H J Plant Res; 2012 May; 125(3):339-49. PubMed ID: 22020695 [TBL] [Abstract][Full Text] [Related]
26. Leaf gas exchange and bean quality fluctuations over the whole canopy vertical profile of Arabic coffee cultivated under elevated CO Rakocevic M; Batista ER; Pazianotto RAA; Scholz MBS; Souza GAR; Campostrini E; Ramalho JC Funct Plant Biol; 2021 Apr; 48(5):469-482. PubMed ID: 33423738 [TBL] [Abstract][Full Text] [Related]
27. Functional relationships between hydraulic traits and the timing of diurnal depression of photosynthesis. Bucci SJ; Carbonell Silletta LM; Garré A; Cavallaro A; Efron ST; Arias NS; Goldstein G; Scholz FG Plant Cell Environ; 2019 May; 42(5):1603-1614. PubMed ID: 30613989 [TBL] [Abstract][Full Text] [Related]
28. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum. Habermann E; San Martin JAB; Contin DR; Bossan VP; Barboza A; Braga MR; Groppo M; Martinez CA PLoS One; 2019; 14(2):e0212506. PubMed ID: 30779815 [TBL] [Abstract][Full Text] [Related]
29. Altered cell wall hydroxycinnamate composition impacts leaf- and canopy-level CO2 uptake and water use in rice. Pathare VS; Panahabadi R; Sonawane BV; Apalla AJ; Koteyeva N; Bartley LE; Cousins AB Plant Physiol; 2023 Dec; 194(1):190-208. PubMed ID: 37503807 [TBL] [Abstract][Full Text] [Related]
31. Atmospheric drought and low light impede mycorrhizal effects on leaf photosynthesis-a glasshouse study on tomato under naturally fluctuating environmental conditions. Bitterlich M; Franken P; Graefe J Mycorrhiza; 2019 Jan; 29(1):13-28. PubMed ID: 30382414 [TBL] [Abstract][Full Text] [Related]
32. Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand. Richardson F; Brodribb TJ; Jordan GJ Tree Physiol; 2017 Jul; 37(7):869-878. PubMed ID: 28898992 [TBL] [Abstract][Full Text] [Related]
33. Leaf relative uptake of carbonyl sulfide to CO Sun W; Berry JA; Yakir D; Seibt U New Phytol; 2022 Sep; 235(5):1729-1742. PubMed ID: 35478172 [TBL] [Abstract][Full Text] [Related]
34. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ; Carlo N; Clark KL; Schäfer KV Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [TBL] [Abstract][Full Text] [Related]
35. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period]. Schulze ED; Lange OL; Koch W Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070 [TBL] [Abstract][Full Text] [Related]
36. Increasing canopy photosynthesis in rice can be achieved without a large increase in water use-A model based on free-air CO Ikawa H; Chen CP; Sikma M; Yoshimoto M; Sakai H; Tokida T; Usui Y; Nakamura H; Ono K; Maruyama A; Watanabe T; Kuwagata T; Hasegawa T Glob Chang Biol; 2018 Mar; 24(3):1321-1341. PubMed ID: 29136323 [TBL] [Abstract][Full Text] [Related]
37. Leaf gas exchange in the frankincense tree (Boswellia papyrifera) of African dry woodlands. Mengistu T; Sterck FJ; Fetene M; Tadesse W; Bongers F Tree Physiol; 2011 Jul; 31(7):740-50. PubMed ID: 21849593 [TBL] [Abstract][Full Text] [Related]
38. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze]. Xie TT; Su PX; Gao S Ying Yong Sheng Tai Xue Bao; 2010 Jun; 21(6):1425-31. PubMed ID: 20873616 [TBL] [Abstract][Full Text] [Related]
39. Structural adjustments in resprouting trees drive differences in post-fire transpiration. Nolan RH; Mitchell PJ; Bradstock RA; Lane PN Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069 [TBL] [Abstract][Full Text] [Related]
40. Quantifying water-use efficiency in plant canopies with varying leaf angle and density distribution. Ponce de León MA; Bailey BN Ann Bot; 2024 Apr; 133(4):605-620. PubMed ID: 38362930 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]