BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27765240)

  • 1. Degradation studies of cholecalciferol (vitamin D3) using HPLC-DAD, UHPLC-MS/MS and chemical derivatization.
    Mahmoodani F; Perera CO; Fedrizzi B; Abernethy G; Chen H
    Food Chem; 2017 Mar; 219():373-381. PubMed ID: 27765240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of light exposure and oxidative status on the stability of vitamins A and D₃ during the storage of fortified soybean oil.
    Hemery YM; Fontan L; Moench-Pfanner R; Laillou A; Berger J; Renaud C; Avallone S
    Food Chem; 2015 Oct; 184():90-8. PubMed ID: 25872430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Vitamin D2 and Vitamin D3 in Fortified Milk Powders and Infant and Nutritional Formulas by Liquid Chromatography-Tandem Mass Spectrometry: Single-Laboratory Validation, First Action 2016.05.
    Gill BD; Abernethy GA; Green RJ; Indyk HE
    J AOAC Int; 2016 Sep; 99(5):1321-30. PubMed ID: 27461755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of sample extracts of vitamin D
    Alexandridou A; Volmer DA
    Anal Bioanal Chem; 2023 Jan; 415(2):327-333. PubMed ID: 36342509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High pressure liquid chromatographic determination of vitamin D3 in livestock feed supplements.
    Ray AC; Dwyer JN; Reagor JC
    J Assoc Off Anal Chem; 1977 Nov; 60(6):1296-1301. PubMed ID: 200599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preparation of milligram quantity of vitamin D3 isomers by a two-step high performance liquid chromatographic method].
    Lu ZR; Chen TC; Holick MF
    Yao Xue Xue Bao; 1992; 27(5):369-74. PubMed ID: 1332420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation chemistry of a Vitamin D analogue (ecalcidene) investigated by HPLC-MS, HPLC-NMR and chemical derivatization.
    Zhang F; Nunes M; Segmuller B; Dunphy R; Hesse RH; Setty SK
    J Pharm Biomed Anal; 2006 Mar; 40(4):850-63. PubMed ID: 16242878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of Dihydroxylated Vitamin D
    Haris A; Lam YPY; Wootton CA; Theisen A; Marzullo BP; Schorr P; Volmer DA; O'Connor PB
    J Am Soc Mass Spectrom; 2022 Jun; 33(6):1022-1030. PubMed ID: 35561028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid oxidation and vitamin D3 degradation in simulated whole milk powder as influenced by processing and storage.
    Mahmoodani F; Perera CO; Abernethy G; Fedrizzi B; Chen H
    Food Chem; 2018 Sep; 261():149-156. PubMed ID: 29739575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid method for the determination of vitamin D3 in milk and infant formula by liquid chromatography/tandem mass spectrometry.
    Gill BD; Zhu X; Indyk HE
    J AOAC Int; 2015; 98(2):431-5. PubMed ID: 25905750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of vitamin D3 metabolites using continuous-flow fast atom bombardment tandem mass spectrometry and high-performance liquid chromatography.
    Yeung B; Vouros P; Reddy GS
    J Chromatogr; 1993 Aug; 645(1):115-23. PubMed ID: 8408412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Stability and Kinetic Study on Thermal Degradation of Vitamin D
    Zareie M; Abbasi A; Faghih S
    J Food Sci; 2019 Sep; 84(9):2475-2481. PubMed ID: 31441511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultrasensitive UHPLC-ESI-MS/MS method augmented with a controlled microwave derivatization reaction for quantitation of vitamin D3 and its major metabolites in COVID-19 patients.
    Ahmed SA; Khojah HMJ; Al-Thagfan SS; Alahmadi YM; Mohammed YA
    Talanta; 2022 Aug; 246():123497. PubMed ID: 35487016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of vitamin D3 in feed, food, and pharmaceuticals using high-performance liquid chromatography/tandem mass spectrometry.
    Schadt HS; Gössl R; Seibel N; Aebischer CP
    J AOAC Int; 2012; 95(5):1487-94. PubMed ID: 23175984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Vitamin D3 Oxidation Products Using High-Resolution and Tandem Mass Spectrometry.
    Mahmoodani F; Perera CO; Abernethy G; Fedrizzi B; Greenwood D; Chen H
    J Am Soc Mass Spectrom; 2018 Jul; 29(7):1442-1455. PubMed ID: 29556928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line post-column Diels-Alder derivatization for the determination of vitamin D3 and its metabolites by liquid chromatography/thermospray mass spectrometry.
    Vreeken RJ; Honing M; van Baar BL; Ghijsen RT; de Jong GJ; Brinkman UA
    Biol Mass Spectrom; 1993 Nov; 22(11):621-32. PubMed ID: 8251549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of vitamin D3 in a stressed formulation: the identification of esters of vitamin D3 formed by a transesterification with triglycerides.
    Ballard JM; Zhu L; Nelson ED; Seburg RA
    J Pharm Biomed Anal; 2007 Jan; 43(1):142-50. PubMed ID: 16901672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin D-biofortified beef: A comparison of cholecalciferol with synthetic versus UVB-mushroom-derived ergosterol as feed source.
    Duffy SK; O'Doherty JV; Rajauria G; Clarke LC; Hayes A; Dowling KG; O'Grady MN; Kerry JP; Jakobsen J; Cashman KD; Kelly AK
    Food Chem; 2018 Aug; 256():18-24. PubMed ID: 29606435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaccessibility study of calcium and vitamin D
    Dima C; Dima S
    Food Chem; 2020 Jan; 303():125416. PubMed ID: 31472385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Determination of vitamin D3 in health-care foods fortified with calcium by reversed-phase high performance liquid chromatography].
    Wu H; Tang G
    Se Pu; 1998 May; 16(3):274-5. PubMed ID: 11327011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.