These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 27765625)
21. All or nothing: Survival, reproduction and oxidative balance in Spotted Wing Drosophila (Drosophila suzukii) in response to cold. Plantamp C; Salort K; Gibert P; Dumet A; Mialdea G; Mondy N; Voituron Y J Insect Physiol; 2016 Jun; 89():28-36. PubMed ID: 27040270 [TBL] [Abstract][Full Text] [Related]
22. Cold Disinfestation for 'Red Globe' Grape (Rhamnales: Vitaceae) Infested With Drosophila suzukii (Diptera: Drosophilidae). Wang X; Zhan G; Ren L; Sun S; Dang H; Zhai Y; Yin H; Li Z; Liu B J Insect Sci; 2020 May; 20(3):. PubMed ID: 32478839 [TBL] [Abstract][Full Text] [Related]
23. Ovary Development and Cold Tolerance of the Invasive Pest Drosophila suzukii (Matsumura) in the Central Plains of Kansas, United States. Everman ER; Freda PJ; Brown M; Schieferecke AJ; Ragland GJ; Morgan TJ Environ Entomol; 2018 Aug; 47(4):1013-1023. PubMed ID: 29846535 [TBL] [Abstract][Full Text] [Related]
24. Thermal Performance of Two Indigenous Pupal Parasitoids Attacking the Invasive Drosophila suzukii (Diptera: Drosophilidae). Wang XG; Serrato MA; Son Y; Walton VM; Hogg BN; Daane KM Environ Entomol; 2018 Jun; 47(3):764-772. PubMed ID: 29635366 [TBL] [Abstract][Full Text] [Related]
25. Cold acclimation triggers lipidomic and metabolic adjustments in the spotted wing drosophila Enriquez T; Colinet H Am J Physiol Regul Integr Comp Physiol; 2019 Jun; 316(6):R751-R763. PubMed ID: 30943049 [TBL] [Abstract][Full Text] [Related]
26. Modelling thermal reaction norms for development and viability in Drosophila suzukii under constant, fluctuating and field conditions. Raynaud-Berton B; Gibert P; Suppo C; Pincebourde S; Colinet H J Therm Biol; 2024 Jul; 123():103891. PubMed ID: 38972154 [TBL] [Abstract][Full Text] [Related]
27. Metabolic insights into the cold survival strategy and overwintering of the common cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Zhu W; Zhang H; Meng Q; Wang M; Zhou G; Li X; Wang H; Miao L; Qin Q; Zhang J J Insect Physiol; 2017 Jul; 100():53-64. PubMed ID: 28529155 [TBL] [Abstract][Full Text] [Related]
28. Evolutionary compromises to metabolic toxins: Ammonia and urea tolerance in Drosophila suzukii and Drosophila melanogaster. Belloni V; Galeazzi A; Bernini G; Mandrioli M; Versace E; Haase A Physiol Behav; 2018 Jul; 191():146-154. PubMed ID: 29679661 [TBL] [Abstract][Full Text] [Related]
29. Plasticity of upper thermal limits to acute and chronic temperature variation in Manduca sexta larvae. Kingsolver JG; MacLean HJ; Goddin SB; Augustine KE J Exp Biol; 2016 May; 219(Pt 9):1290-4. PubMed ID: 26944498 [TBL] [Abstract][Full Text] [Related]
30. Tweedle gene family of Drosophila suzukii (Matsumura) larva enhances the basal tolerance to cold and hypoxia. Wang X; Liu L; Guo S; Liu B; Zhai Y; Yan S; Shen J; Ullah F; Li Z Pest Manag Sci; 2023 Sep; 79(9):3012-3021. PubMed ID: 36966456 [TBL] [Abstract][Full Text] [Related]
32. Photoperiodic and thermal regulation of development and cold hardiness in larvae of the clover leaf weevil, Hypera punctata. Watanabe M Cryobiology; 2000 Jun; 40(4):294-301. PubMed ID: 10924261 [TBL] [Abstract][Full Text] [Related]
33. Physiological basis for low-temperature survival and storage of quiescent larvae of the fruit fly Drosophila melanogaster. Koštál V; Korbelová J; Štětina T; Poupardin R; Colinet H; Zahradníčková H; Opekarová I; Moos M; Šimek P Sci Rep; 2016 Aug; 6():32346. PubMed ID: 27573891 [TBL] [Abstract][Full Text] [Related]
34. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Dalton DT; Walton VM; Shearer PW; Walsh DB; Caprile J; Isaacs R Pest Manag Sci; 2011 Nov; 67(11):1368-74. PubMed ID: 22021034 [TBL] [Abstract][Full Text] [Related]
35. Short-term hardening effects on survival of acute and chronic cold exposure by Drosophila melanogaster larvae. Rajamohan A; Sinclair BJ J Insect Physiol; 2008 Apr; 54(4):708-18. PubMed ID: 18342328 [TBL] [Abstract][Full Text] [Related]
36. Effects of seasonal acclimation on cold tolerance and biochemical status of the carob moth, Ectomyelois ceratoniae Zeller, last instar larvae. Heydari M; Izadi H Bull Entomol Res; 2014 Oct; 104(5):592-600. PubMed ID: 24819226 [TBL] [Abstract][Full Text] [Related]
37. Fermentation for Disinfesting Fruit Waste From Drosophila Species (Diptera: Drosophilidae). Noble R; Dobrovin-Pennington A; Shaw B; Buss DS; Cross JV; Fountain MT Environ Entomol; 2017 Aug; 46(4):939-945. PubMed ID: 28881957 [TBL] [Abstract][Full Text] [Related]
38. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090 [TBL] [Abstract][Full Text] [Related]
39. Rapid effects of humidity acclimation on stress resistance in Drosophila melanogaster. Aggarwal DD; Ranga P; Kalra B; Parkash R; Rashkovetsky E; Bantis LE Comp Biochem Physiol A Mol Integr Physiol; 2013 Sep; 166(1):81-90. PubMed ID: 23688505 [TBL] [Abstract][Full Text] [Related]
40. An impressive capacity for cold tolerance plasticity protects against ionoregulatory collapse in the disease vector Jass A; Yerushalmi GY; Davis HE; Donini A; MacMillan HA J Exp Biol; 2019 Dec; 222(Pt 24):. PubMed ID: 31732503 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]