BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27765799)

  • 41. ErbB receptors and signaling pathways in cancer.
    Hynes NE; MacDonald G
    Curr Opin Cell Biol; 2009 Apr; 21(2):177-84. PubMed ID: 19208461
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic emergence of the mesenchymal CD44(pos)CD24(neg/low) phenotype in HER2-gene amplified breast cancer cells with de novo resistance to trastuzumab (Herceptin).
    Oliveras-Ferraros C; Vazquez-Martin A; Martin-Castillo B; Cufí S; Del Barco S; Lopez-Bonet E; Brunet J; Menendez JA
    Biochem Biophys Res Commun; 2010 Jun; 397(1):27-33. PubMed ID: 20470755
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential regulation of ErbB2 expression by cAMP-dependent protein kinase in tamoxifen-resistant breast cancer cells.
    Yang JW; Kim MR; Kim HG; Kim SK; Jeong HG; Kang KW
    Arch Pharm Res; 2008 Mar; 31(3):350-6. PubMed ID: 18409049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. HER-2 gene amplification, HER-2 and epidermal growth factor receptor mRNA and protein expression, and lapatinib efficacy in women with metastatic breast cancer.
    Press MF; Finn RS; Cameron D; Di Leo A; Geyer CE; Villalobos IE; Santiago A; Guzman R; Gasparyan A; Ma Y; Danenberg K; Martin AM; Williams L; Oliva C; Stein S; Gagnon R; Arbushites M; Koehler MT
    Clin Cancer Res; 2008 Dec; 14(23):7861-70. PubMed ID: 19047115
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells.
    Fessler SP; Wotkowicz MT; Mahanta SK; Bamdad C
    Breast Cancer Res Treat; 2009 Nov; 118(1):113-24. PubMed ID: 19415485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional SNP in stem of mir-146a affects Her2 status and breast cancer survival.
    Meshkat M; Tanha HM; Naeini MM; Ghaedi K; Sanati MH; Meshkat M; Bagheri F
    Cancer Biomark; 2016 Jul; 17(2):213-22. PubMed ID: 27434289
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuromedin U: a candidate biomarker and therapeutic target to predict and overcome resistance to HER-tyrosine kinase inhibitors.
    Rani S; Corcoran C; Shiels L; Germano S; Breslin S; Madden S; McDermott MS; Browne BC; O'Donovan N; Crown J; Gogarty M; Byrne AT; O'Driscoll L
    Cancer Res; 2014 Jul; 74(14):3821-33. PubMed ID: 24876102
    [TBL] [Abstract][Full Text] [Related]  

  • 48. miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance.
    De Cola A; Volpe S; Budani MC; Ferracin M; Lattanzio R; Turdo A; D'Agostino D; Capone E; Stassi G; Todaro M; Di Ilio C; Sala G; Piantelli M; Negrini M; Veronese A; De Laurenzi V
    Cell Death Dis; 2015 Jul; 6(7):e1823. PubMed ID: 26181203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. HER2 therapy: molecular mechanisms of trastuzumab resistance.
    Nahta R; Esteva FJ
    Breast Cancer Res; 2006; 8(6):215. PubMed ID: 17096862
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced drug resistance in cells coexpressing ErbB2 with EGF receptor or ErbB3.
    Chen X; Yeung TK; Wang Z
    Biochem Biophys Res Commun; 2000 Nov; 277(3):757-63. PubMed ID: 11062025
    [TBL] [Abstract][Full Text] [Related]  

  • 51. FOXO factors and breast cancer: outfoxing endocrine resistance.
    Bullock M
    Endocr Relat Cancer; 2016 Feb; 23(2):R113-30. PubMed ID: 26612860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel role of ADGRF1 (GPR110) in promoting cellular quiescence and chemoresistance in human epidermal growth factor receptor 2-positive breast cancer.
    Abdulkareem NM; Bhat R; Qin L; Vasaikar S; Gopinathan A; Mitchell T; Shea MJ; Nanda S; Thangavel H; Zhang B; De Angelis C; Schiff R; Trivedi MV
    FASEB J; 2021 Jul; 35(7):e21719. PubMed ID: 34110646
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis.
    Eccles SA
    J Mammary Gland Biol Neoplasia; 2001 Oct; 6(4):393-406. PubMed ID: 12013529
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Breast cancer drug resistance: Decoding the roles of Hippo pathway crosstalk.
    Dehghanian F; Ghahnavieh LE; Nilchi AN; Khalilian S; Joonbakhsh R
    Gene; 2024 Jul; 916():148424. PubMed ID: 38588933
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Going beyond genetics to discover cancer targets.
    Sandoval GJ; Hahn WC
    Genome Biol; 2017 May; 18(1):95. PubMed ID: 28532420
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biologicals to direct nanotherapeutics towards HER2-positive breast cancers.
    Kumar G; Nandakumar K; Mutalik S; Rao CM
    Nanomedicine; 2020 Jul; 27():102197. PubMed ID: 32275958
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis.
    Borin TF; Angara K; Rashid MH; Achyut BR; Arbab AS
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29292756
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Update on HER-2 as a target for cancer therapy: the ERBB2 promoter and its exploitation for cancer treatment.
    Hurst HC
    Breast Cancer Res; 2001; 3(6):395-8. PubMed ID: 11737892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance.
    Tan M; Yu D
    Adv Exp Med Biol; 2007; 608():119-29. PubMed ID: 17993237
    [No Abstract]   [Full Text] [Related]  

  • 60. Molecular basis for therapy resistance.
    Lønning PE
    Mol Oncol; 2010 Jun; 4(3):284-300. PubMed ID: 20466604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.