These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 27765963)
1. Comparison of the colloidal stability, bioaccessibility and antioxidant activity of corn protein hydrolysate and sodium caseinate stabilized curcumin nanoparticles. Wang YH; Yuan Y; Yang XQ; Wang JM; Guo J; Lin Y J Food Sci Technol; 2016 Jul; 53(7):2923-2932. PubMed ID: 27765963 [TBL] [Abstract][Full Text] [Related]
2. Calcium phosphate coated core-shell protein nanocarriers: Robust stability, controlled release and enhanced anticancer activity for curcumin delivery. Wu Q; Gao H; Vriesekoop F; Liu Z; He J; Liang H Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111094. PubMed ID: 32600698 [TBL] [Abstract][Full Text] [Related]
3. Chondroitin sulfate deposited on foxtail millet prolamin/caseinate nanoparticles to improve physicochemical properties and enhance cancer therapeutic effects. Chen X; Wu YC; Gong PX; Zhang YH; Li HJ Food Funct; 2022 May; 13(9):5343-5352. PubMed ID: 35466985 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and characterization of core-shell gliadin/tremella polysaccharide nanoparticles for curcumin delivery: Encapsulation efficiency, physicochemical stability and bioaccessibility. Zhang X; Wei Z; Wang X; Wang Y; Tang Q; Huang Q; Xue C Curr Res Food Sci; 2022; 5():288-297. PubMed ID: 36561330 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of foxtail millet prolamin/caseinate/chitosan hydrochloride composite nanoparticles using antisolvent and pH-driven methods for curcumin delivery. Chen X; Wu YC; Qian LH; Zhang YH; Gong PX; Liu W; Li HJ Food Chem; 2023 Mar; 404(Pt A):134604. PubMed ID: 36270228 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of polysaccharide-coated oleanolic acid-curcumin-coassembled nanoparticles (OA/Cur NPs): Enhancement of colloidal stability and water solubility. Yan L; Liu H; Wang Y; Zhang L; Ma C; Abd El-Aty AM Food Chem; 2024 Sep; 451():139482. PubMed ID: 38688096 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of a Soybean Bowman-Birk Inhibitor (BBI) Nanodelivery Carrier To Improve Bioavailability of Curcumin. Liu C; Cheng F; Yang X J Agric Food Chem; 2017 Mar; 65(11):2426-2434. PubMed ID: 28249113 [TBL] [Abstract][Full Text] [Related]
8. One-step self-assembly of curcumin-loaded zein/sophorolipid nanoparticles: physicochemical stability, redispersibility, solubility and bioaccessibility. Yuan Y; Huang J; He S; Ma M; Wang D; Xu Y Food Funct; 2021 Jul; 12(13):5719-5730. PubMed ID: 34115089 [TBL] [Abstract][Full Text] [Related]
9. Self-assembled caseinate-laponite® nanocomposites for curcumin delivery. Qu B; Xue J; Luo Y Food Chem; 2021 Nov; 363():130338. PubMed ID: 34161872 [TBL] [Abstract][Full Text] [Related]
10. Delivery of curcumin by shellac encapsulation: Stability, bioaccessibility, freeze-dried redispersibility, and solubilization. Yuan Y; Zhang S; Ma M; Xu Y; Wang D Food Chem X; 2022 Oct; 15():100431. PubMed ID: 36211724 [TBL] [Abstract][Full Text] [Related]
11. Complexation of curcumin with Lepidium sativum protein hydrolysate as a novel curcumin delivery system. Kadam D; Palamthodi S; Lele SS Food Chem; 2019 Nov; 298():125091. PubMed ID: 31272049 [TBL] [Abstract][Full Text] [Related]
12. Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin. Chen S; Wu J; Tang Q; Xu C; Huang Y; Huang D; Luo F; Wu Y; Yan F; Weng Z; Wang S Carbohydr Polym; 2020 Jan; 228():115398. PubMed ID: 31635734 [TBL] [Abstract][Full Text] [Related]
13. Curcumin-tannic acid-poloxamer nanoassemblies enhance curcumin's uptake and bioactivity against cancer cells in vitro. Sunoqrot S; Orainee B; Alqudah DA; Daoud F; Alshaer W Int J Pharm; 2021 Dec; 610():121255. PubMed ID: 34737014 [TBL] [Abstract][Full Text] [Related]
14. Improved Physicochemical Properties of Curcumin-Loaded Solid Lipid Nanoparticles Stabilized by Sodium Caseinate-Lactose Maillard Conjugate. Huang S; He J; Cao L; Lin H; Zhang W; Zhong Q J Agric Food Chem; 2020 Jul; 68(26):7072-7081. PubMed ID: 32511914 [TBL] [Abstract][Full Text] [Related]
15. Development of Nanocomplexes for Curcumin Vehiculization Using Ovalbumin and Sodium Alginate as Building Blocks: Improved Stability, Bioaccessibility, and Antioxidant Activity. Feng J; Xu H; Zhang L; Wang H; Liu S; Liu Y; Hou W; Li C J Agric Food Chem; 2019 Jan; 67(1):379-390. PubMed ID: 30566342 [TBL] [Abstract][Full Text] [Related]
16. Encapsulation of curcumin in soluble soybean polysaccharide-coated gliadin nanoparticles: interaction, stability, antioxidant capacity, and bioaccessibility. Guo S; Zhao Y; Luo S; Mu D; Li X; Zhong X; Jiang S; Zheng Z J Sci Food Agric; 2022 Sep; 102(12):5121-5131. PubMed ID: 35275410 [TBL] [Abstract][Full Text] [Related]
17. Amphiphilic zein hydrolysate as a novel nano-delivery vehicle for curcumin. Wang YH; Wang JM; Yang XQ; Guo J; Lin Y Food Funct; 2015 Aug; 6(8):2636-45. PubMed ID: 26134524 [TBL] [Abstract][Full Text] [Related]
18. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. Sun L; Liu Z; Wang L; Cun D; Tong HHY; Yan R; Chen X; Wang R; Zheng Y J Control Release; 2017 May; 254():44-54. PubMed ID: 28344018 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of Curcumin Micellar Nanoparticles with Enhanced Anti-Cancer Activity. Lee WH; Bebawy M; Loo CY; Luk F; Mason RS; Rohanizadeh R J Biomed Nanotechnol; 2015 Jun; 11(6):1093-105. PubMed ID: 26353597 [TBL] [Abstract][Full Text] [Related]
20. Poloxamer Hou X; Liang J; Yang X; Bai J; Yang M; Qiao N; Hu Z; Yan X; Shi Y Food Chem; 2022 May; 375():131674. PubMed ID: 34848087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]