These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27766433)

  • 1. Midbrain Synchrony to Envelope Structure Supports Behavioral Sensitivity to Single-Formant Vowel-Like Sounds in Noise.
    Henry KS; Abrams KS; Forst J; Mender MJ; Neilans EG; Idrobo F; Carney LH
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):165-181. PubMed ID: 27766433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain.
    Henry KS; Neilans EG; Abrams KS; Idrobo F; Carney LH
    J Neurophysiol; 2016 Apr; 115(4):1905-16. PubMed ID: 26843608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Midbrain-Level Neural Correlates of Behavioral Tone-in-Noise Detection: Dependence on Energy and Envelope Cues.
    Wang Y; Abrams KS; Carney LH; Henry KS
    J Neurosci; 2021 Aug; 41(34):7206-7223. PubMed ID: 34266898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speech enhancement for listeners with hearing loss based on a model for vowel coding in the auditory midbrain.
    Rao A; Carney LH
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2081-91. PubMed ID: 24686228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formant-frequency discrimination of synthesized vowels in budgerigars (Melopsittacus undulatus) and humans.
    Henry KS; Amburgey KN; Abrams KS; Idrobo F; Carney LH
    J Acoust Soc Am; 2017 Oct; 142(4):2073. PubMed ID: 29092534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speech Coding in the Brain: Representation of Vowel Formants by Midbrain Neurons Tuned to Sound Fluctuations.
    Carney LH; Li T; McDonough JM
    eNeuro; 2015; 2(4):. PubMed ID: 26464993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of masking by Schroeder-phase harmonic tone complexes in the budgerigar (Melopsittacus undulatus).
    Henry KS; Wang Y; Abrams KS; Carney LH
    Hear Res; 2023 Aug; 435():108812. PubMed ID: 37269601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered neural encoding of vowels in noise does not affect behavioral vowel discrimination in gerbils with age-related hearing loss.
    Heeringa AN; Jüchter C; Beutelmann R; Klump GM; Köppl C
    Front Neurosci; 2023; 17():1238941. PubMed ID: 38033551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sensorineural hearing loss on formant-frequency discrimination: Measurements and models.
    Carney LH; Cameron DA; Kinast KB; Feld CE; Schwarz DM; Leong UC; McDonough JM
    Hear Res; 2023 Aug; 435():108788. PubMed ID: 37224720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory nerve representation of vowels in background noise.
    Sachs MB; Voigt HF; Young ED
    J Neurophysiol; 1983 Jul; 50(1):27-45. PubMed ID: 6875649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses to diotic tone-in-noise stimuli in the inferior colliculus: stimulus envelope and neural fluctuation cues.
    Fan L; Henry KS; Carney LH
    Hear Res; 2021 Sep; 409():108328. PubMed ID: 34391193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supra-Threshold Hearing and Fluctuation Profiles: Implications for Sensorineural and Hidden Hearing Loss.
    Carney LH
    J Assoc Res Otolaryngol; 2018 Aug; 19(4):331-352. PubMed ID: 29744729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying cues for tone-in-noise detection using decision variable correlation in the budgerigar (Melopsittacus undulatus).
    Henry KS; Amburgey KN; Abrams KS; Carney LH
    J Acoust Soc Am; 2020 Feb; 147(2):984. PubMed ID: 32113293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal behavioral discrimination of envelope statistics in budgerigars with kainate-induced cochlear synaptopathy.
    Henry KS; Guo AA; Abrams KS
    Hear Res; 2024 Jan; 441():108927. PubMed ID: 38096707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of selective auditory-nerve damage on the behavioral audiogram and temporal integration in the budgerigar.
    Wong SJ; Abrams KS; Amburgey KN; Wang Y; Henry KS
    Hear Res; 2019 Mar; 374():24-34. PubMed ID: 30703625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech Coding in the Midbrain: Effects of Sensorineural Hearing Loss.
    Carney LH; Kim DO; Kuwada S
    Adv Exp Med Biol; 2016; 894():427-435. PubMed ID: 27080684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal Tone-In-Noise Sensitivity in Trained Budgerigars despite Substantial Auditory-Nerve Injury: No Evidence of Hidden Hearing Loss.
    Henry KS; Abrams KS
    J Neurosci; 2021 Jan; 41(1):118-129. PubMed ID: 33177067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of envelope following responses to vowel polarity.
    Easwar V; Beamish L; Aiken S; Choi JM; Scollie S; Purcell D
    Hear Res; 2015 Feb; 320():38-50. PubMed ID: 25500177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty in location, level and fundamental frequency results in informational masking in a vowel discrimination task for young and elderly subjects.
    Eipert L; Selle A; Klump GM
    Hear Res; 2019 Jun; 377():142-152. PubMed ID: 30933706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.