BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 27766447)

  • 21. Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells.
    Park J; Choi H; Min JS; Kim B; Lee SR; Yun JW; Choi MS; Chang KT; Lee DS
    J Neurochem; 2015 Mar; 132(6):687-702. PubMed ID: 25359615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis.
    Kim DI; Lee KH; Gabr AA; Choi GE; Kim JS; Ko SH; Han HJ
    Biochim Biophys Acta; 2016 Nov; 1863(11):2820-2834. PubMed ID: 27599716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial Regulatory Pathways in the Pathogenesis of Alzheimer's Disease.
    Adiele RC; Adiele CA
    J Alzheimers Dis; 2016 Jul; 53(4):1257-70. PubMed ID: 27392851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Protective Effect of Icariin on Mitochondrial Transport and Distribution in Primary Hippocampal Neurons from 3× Tg-AD Mice.
    Chen Y; Han S; Huang X; Ni J; He X
    Int J Mol Sci; 2016 Jan; 17(2):. PubMed ID: 26828481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell degeneration induced by amyloid-beta peptides: implications for Alzheimer's disease.
    Pereira C; Ferreiro E; Cardoso SM; de Oliveira CR
    J Mol Neurosci; 2004; 23(1-2):97-104. PubMed ID: 15126695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into mitochondrial dysfunction: aging, amyloid-β, and tau-A deleterious trio.
    Schmitt K; Grimm A; Kazmierczak A; Strosznajder JB; Götz J; Eckert A
    Antioxid Redox Signal; 2012 Jun; 16(12):1456-66. PubMed ID: 22117646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease.
    Zhu X; Perry G; Smith MA; Wang X
    J Alzheimers Dis; 2013; 33 Suppl 1(0 1):S253-62. PubMed ID: 22531428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple defects in energy metabolism in Alzheimer's disease.
    Ferreira IL; Resende R; Ferreiro E; Rego AC; Pereira CF
    Curr Drug Targets; 2010 Oct; 11(10):1193-206. PubMed ID: 20840064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of mitochondrial dynamics and cell fate.
    Dhingra R; Kirshenbaum LA
    Circ J; 2014; 78(4):803-10. PubMed ID: 24647412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial defects: An emerging theranostic avenue towards Alzheimer's associated dysregulations.
    Mani S; Swargiary G; Singh M; Agarwal S; Dey A; Ojha S; Jha NK
    Life Sci; 2021 Nov; 285():119985. PubMed ID: 34592237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Down-regulation of mortalin exacerbates Aβ-mediated mitochondrial fragmentation and dysfunction.
    Park SJ; Shin JH; Jeong JI; Song JH; Jo YK; Kim ES; Lee EH; Hwang JJ; Lee EK; Chung SJ; Koh JY; Jo DG; Cho DH
    J Biol Chem; 2014 Jan; 289(4):2195-204. PubMed ID: 24324263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PINK1 regulates mitochondrial fission/fusion and neuroinflammation in β-amyloid-induced Alzheimer's disease models.
    Wang X; Xue Y; Yao Y; Li Y; Ji X; Chi T; Liu P; Zou L
    Neurochem Int; 2022 Mar; 154():105298. PubMed ID: 35134462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Donepezil attenuates Aβ-associated mitochondrial dysfunction and reduces mitochondrial Aβ accumulation in vivo and in vitro.
    Ye CY; Lei Y; Tang XC; Zhang HY
    Neuropharmacology; 2015 Aug; 95():29-36. PubMed ID: 25744714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mfn2 ablation causes an oxidative stress response and eventual neuronal death in the hippocampus and cortex.
    Jiang S; Nandy P; Wang W; Ma X; Hsia J; Wang C; Wang Z; Niu M; Siedlak SL; Torres S; Fujioka H; Xu Y; Lee HG; Perry G; Liu J; Zhu X
    Mol Neurodegener; 2018 Feb; 13(1):5. PubMed ID: 29391029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease.
    Wang X; Su B; Zheng L; Perry G; Smith MA; Zhu X
    J Neurochem; 2009 May; 109 Suppl 1(Suppl 1):153-9. PubMed ID: 19393022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of mitochondrial function and dynamics by the metabolic enhancer piracetam.
    Stockburger C; Kurz C; Koch KA; Eckert SH; Leuner K; Müller WE
    Biochem Soc Trans; 2013 Oct; 41(5):1331-4. PubMed ID: 24059528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer's transgenic mice.
    Dragicevic N; Mamcarz M; Zhu Y; Buzzeo R; Tan J; Arendash GW; Bradshaw PC
    J Alzheimers Dis; 2010; 20 Suppl 2():S535-50. PubMed ID: 20463404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial Perturbation in Alzheimer's Disease and Diabetes.
    Akhter F; Chen D; Yan SF; Yan SS
    Prog Mol Biol Transl Sci; 2017; 146():341-361. PubMed ID: 28253990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blockage of GSK3β-mediated Drp1 phosphorylation provides neuroprotection in neuronal and mouse models of Alzheimer's disease.
    Yan J; Liu XH; Han MZ; Wang YM; Sun XL; Yu N; Li T; Su B; Chen ZY
    Neurobiol Aging; 2015 Jan; 36(1):211-27. PubMed ID: 25192600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. POTENTIAL APPROACHES FOR REDUCING AMYLOID β PRODUCTION.
    Zheng C; Lan Y; Zhang J; Zhang L; Wu J; Guo S
    Acta Pol Pharm; 2016 Jul; 73(4):835-842. PubMed ID: 29648708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.