These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 27766518)

  • 1. Algorithm to improve accuracy of energy expended in a room calorimeter.
    Quan H; Hao W; Li L; Sun M; Zhang K
    Med Biol Eng Comput; 2017 Aug; 55(8):1215-1225. PubMed ID: 27766518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of energy expenditure measurements by a new basic respiratory room vs. classical ventilated hood.
    Van Soom T; Tjalma W; Van Daele U; Gebruers N; van Breda E
    Nutr J; 2023 Dec; 22(1):72. PubMed ID: 38114986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of a whole room indirect calorimeter for measurement of rapid changes in energy expenditure.
    Sun M; Reed GW; Hill JO
    J Appl Physiol (1985); 1994 Jun; 76(6):2686-91. PubMed ID: 7928901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithm for transient response of whole body indirect calorimeter: deconvolution with a regularization parameter.
    Tokuyama K; Ogata H; Katayose Y; Satoh M
    J Appl Physiol (1985); 2009 Feb; 106(2):640-50. PubMed ID: 19008487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronous direct gradient layer and indirect room calorimetry.
    Seale JL; Rumpler WV
    J Appl Physiol (1985); 1997 Nov; 83(5):1775-81. PubMed ID: 9375351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing energy expenditure detection in human metabolic chambers.
    Brychta RJ; Rothney MP; Skarulis MC; Chen KY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6864-8. PubMed ID: 19964185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A water-sealed indirect calorimeter for measurement of oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure in infants.
    Dechert RE; Wesley JR; Schafer LE; LaMond S; Nicks J; Coran AG; Bartlett RH
    JPEN J Parenter Enteral Nutr; 1988; 12(3):256-9. PubMed ID: 3134559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity and reliability of a new portable telemetric calorimeter designed to measure oxygen consumption and carbon dioxide production.
    De Lorenzo A; Sorge RP; Bertini I; Andreoli A; lacopino L; Di Daniele N; Perriello G
    Diabetes Nutr Metab; 2001 Oct; 14(5):268-76. PubMed ID: 11806467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential kinetics of the cardiac, ventilatory, and gas exchange variables during walking under moderate hypoxia.
    Ebine N; Aoki T; Itoh M; Fukuoka Y
    PLoS One; 2018; 13(7):e0200186. PubMed ID: 30044809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance determinants, running energetics and spatiotemporal gait parameters during a treadmill ultramarathon.
    Howe CCF; Swann N; Spendiff O; Kosciuk A; Pummell EKL; Moir HJ
    Eur J Appl Physiol; 2021 Jun; 121(6):1759-1771. PubMed ID: 33704547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the accuracy of instantaneous gas exchange rates, energy expenditure and respiratory quotient calculations obtained from indirect whole room calorimetry.
    Gribok A; Hoyt R; Buller M; Rumpler W
    Physiol Meas; 2013 Jun; 34(6):737-55. PubMed ID: 23719329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Berlin-Buch respiration chamber for energy expenditure measurements.
    Mähler A; Schütte T; Steiniger J; Boschmann M
    Eur J Appl Physiol; 2023 Jun; 123(6):1359-1368. PubMed ID: 36849666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Description of a direct-indirect room-sized calorimeter.
    Seale JL; Rumpler WV; Moe PW
    Am J Physiol; 1991 Feb; 260(2 Pt 1):E306-20. PubMed ID: 1996633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oral (13)C-bicarbonate technique for estimation of energy expenditure in dogs: validation against indirect calorimetry.
    Larsson C; Jensen RB; Junghans P; Tauson AH
    Arch Anim Nutr; 2014; 68(1):42-54. PubMed ID: 24499403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caltrac versus calorimeter determination of 24-h energy expenditure in female children and adolescents.
    Bray MS; Wong WW; Morrow JR; Butte NF; Pivarnik JM
    Med Sci Sports Exerc; 1994 Dec; 26(12):1524-30. PubMed ID: 7869888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive measurement of cardiac output using an iterative, respiration-based method.
    Klein M; Minkovich L; Machina M; Selzner M; Spetzler VN; Knaak JM; Roy D; Duffin J; Fisher JA
    Br J Anaesth; 2015 Mar; 114(3):406-13. PubMed ID: 25488304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ASSESSING THE USEFULNESS OF THE QUASI-IDEAL OBSERVER FOR QUALITY CONTROL IN FLUOROSCOPY.
    Tesselaar E; Sandborg M
    Radiat Prot Dosimetry; 2016 Jun; 169(1-4):360-4. PubMed ID: 26493947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.
    de Jonge L; Nguyen T; Smith SR; Zachwieja JJ; Roy HJ; Bray GA
    Int J Obes Relat Metab Disord; 2001 Jul; 25(7):929-34. PubMed ID: 11443488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evaluation of a compact metabolic measurement instrument.
    Weissman C; Sardar A; Kemper M
    JPEN J Parenter Enteral Nutr; 1990; 14(2):216-21. PubMed ID: 2112632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of work:rest cycle duration on [Formula: see text] fluctuations during intermittent exercise.
    Combes A; Dekerle J; Bougault V; Daussin FN
    J Sports Sci; 2017 Jan; 35(1):7-13. PubMed ID: 26943697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.