These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 27766722)
1. Mediating Order and Modulating Porosity by Controlled Hydrolysis in a Phosphonate Monoester Metal-Organic Framework. Gelfand BS; Huynh RP; Mah RK; Shimizu GK Angew Chem Int Ed Engl; 2016 Nov; 55(47):14614-14617. PubMed ID: 27766722 [TBL] [Abstract][Full Text] [Related]
2. Design of a humidity-stable metal-organic framework using a phosphonate monoester ligand. Gelfand BS; Lin JB; Shimizu GK Inorg Chem; 2015 Feb; 54(4):1185-7. PubMed ID: 25646642 [TBL] [Abstract][Full Text] [Related]
3. Orthogonalization of Polyaryl Linkers as a Route to More Porous Phosphonate Metal-Organic Frameworks. Glavinović M; Perras JH; Gelfand BS; Lin JB; Shimizu GKH Chemistry; 2022 Jun; 28(31):e202200874. PubMed ID: 35349770 [TBL] [Abstract][Full Text] [Related]
4. A Robust Metal-Organic Framework Combining Open Metal Sites and Polar Groups for Methane Purification and CO Chen CX; Zheng SP; Wei ZW; Cao CC; Wang HP; Wang D; Jiang JJ; Fenske D; Su CY Chemistry; 2017 Mar; 23(17):4060-4064. PubMed ID: 28177165 [TBL] [Abstract][Full Text] [Related]
5. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework. Wu X; Yuan B; Bao Z; Deng S J Colloid Interface Sci; 2014 Sep; 430():78-84. PubMed ID: 24998057 [TBL] [Abstract][Full Text] [Related]
7. Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures. Ullah R; Atilhan M; Anaya B; Al-Muhtaseb S; Aparicio S; Patel H; Thirion D; Yavuz CT ACS Appl Mater Interfaces; 2016 Aug; 8(32):20772-85. PubMed ID: 27458732 [TBL] [Abstract][Full Text] [Related]
8. A Moisture-Stable 3D Microporous Co Chand S; Pal A; Das MC Chemistry; 2018 Apr; 24(22):5982-5986. PubMed ID: 29436750 [TBL] [Abstract][Full Text] [Related]
9. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers. Sim J; Yim H; Ko N; Choi SB; Oh Y; Park HJ; Park S; Kim J Dalton Trans; 2014 Dec; 43(48):18017-24. PubMed ID: 25351165 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and Selective CO2 Capture Properties of a Series of Hexatopic Linker-Based Metal-Organic Frameworks. Nguyen PT; Nguyen HT; Pham HQ; Kim J; Cordova KE; Furukawa H Inorg Chem; 2015 Oct; 54(20):10065-72. PubMed ID: 26445199 [TBL] [Abstract][Full Text] [Related]
11. Paramagnetic Ionic Liquid/Metal Organic Framework Composites for CO Ferreira TJ; Vera AT; de Moura BA; Esteves LM; Tariq M; Esperança JMSS; Esteves IAAC Front Chem; 2020; 8():590191. PubMed ID: 33304882 [TBL] [Abstract][Full Text] [Related]
12. Increasing the CO2 /N2 Selectivity with a Higher Surface Density of Pyridinic Lewis Basic Sites in Porous Carbon Derived from a Pyridyl-Ligand-Based Metal-Organic Framework. Li L; Wang Y; Gu X; Yang Q; Zhao X Chem Asian J; 2016 Jul; 11(13):1913-20. PubMed ID: 27146096 [TBL] [Abstract][Full Text] [Related]
13. A Base-Resistant Zn He T; Zhang YZ; Wang B; Lv XL; Xie LH; Li JR Chempluschem; 2016 Aug; 81(8):864-871. PubMed ID: 31968828 [TBL] [Abstract][Full Text] [Related]
14. Solvothermal Metal Metathesis on a Metal-Organic Framework with Constricted Pores and the Study of Gas Separation. Li L; Xue H; Wang Y; Zhao P; Zhu D; Jiang M; Zhao X ACS Appl Mater Interfaces; 2015 Nov; 7(45):25402-12. PubMed ID: 26517280 [TBL] [Abstract][Full Text] [Related]
15. Enhanced CO2 Adsorption Affinity in a NbO-type MOF Constructed from a Low-Cost Diisophthalate Ligand with a Piperazine-Ring Bridge. Mu Q; Wang H; Li L; Wang C; Wang Y; Zhao X Chem Asian J; 2015 Sep; 10(9):1864-9. PubMed ID: 26183114 [TBL] [Abstract][Full Text] [Related]
16. Enhanced uptake and selectivity of CO(2) adsorption in a hydrostable metal-organic frameworks via incorporating methylol and methyl groups. Wang C; Li L; Tang S; Zhao X ACS Appl Mater Interfaces; 2014 Oct; 6(19):16932-40. PubMed ID: 25198245 [TBL] [Abstract][Full Text] [Related]
17. Comparison of gas sorption properties of neutral and anionic metal-organic frameworks prepared from the same building blocks but in different solvent systems. Choi MH; Park HJ; Hong DH; Suh MP Chemistry; 2013 Dec; 19(51):17432-8. PubMed ID: 24318268 [TBL] [Abstract][Full Text] [Related]
18. Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers. Taylor JM; Vaidhyanathan R; Iremonger SS; Shimizu GK J Am Chem Soc; 2012 Sep; 134(35):14338-40. PubMed ID: 22909234 [TBL] [Abstract][Full Text] [Related]
19. Microporous rod metal-organic frameworks with diverse Zn/Cd-triazolate ribbons as secondary building units for CO Zhang JW; Hu MC; Li SN; Jiang YC; Zhai QG Dalton Trans; 2017 Jan; 46(3):836-844. PubMed ID: 28001155 [TBL] [Abstract][Full Text] [Related]
20. Enhancing CO(2) separation ability of a metal-organic framework by post-synthetic ligand exchange with flexible aliphatic carboxylates. Hong DH; Suh MP Chemistry; 2014 Jan; 20(2):426-34. PubMed ID: 24390910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]