BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27766833)

  • 1. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein.
    Amano R; Takada K; Tanaka Y; Nakamura Y; Kawai G; Kozu T; Sakamoto T
    Biochemistry; 2016 Nov; 55(45):6221-6229. PubMed ID: 27766833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of a DNA mimicking motif of an RNA aptamer against transcription factor AML1 Runt domain.
    Nomura Y; Tanaka Y; Fukunaga J; Fujiwara K; Chiba M; Iibuchi H; Tanaka T; Nakamura Y; Kawai G; Kozu T; Sakamoto T
    J Biochem; 2013 Dec; 154(6):513-9. PubMed ID: 23997091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugation of two RNA aptamers improves binding affinity to AML1 Runt domain.
    Nomura Y; Yamazaki K; Amano R; Takada K; Nagata T; Kobayashi N; Tanaka Y; Fukunaga J; Katahira M; Kozu T; Nakamura Y; Haishima Y; Torigoe H; Sakamoto T
    J Biochem; 2017 Dec; 162(6):431-436. PubMed ID: 28992043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element.
    Fukunaga J; Nomura Y; Tanaka Y; Amano R; Tanaka T; Nakamura Y; Kawai G; Sakamoto T; Kozu T
    RNA; 2013 Jul; 19(7):927-36. PubMed ID: 23709277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic study of aptamers binding to their target proteins.
    Sakamoto T; Ennifar E; Nakamura Y
    Biochimie; 2018 Feb; 145():91-97. PubMed ID: 29054802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-affinity relationship of the cocaine-binding aptamer with quinine derivatives.
    Slavkovic S; Altunisik M; Reinstein O; Johnson PE
    Bioorg Med Chem; 2015 May; 23(10):2593-7. PubMed ID: 25858454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quinine binding by the cocaine-binding aptamer. Thermodynamic and hydrodynamic analysis of high-affinity binding of an off-target ligand.
    Reinstein O; Yoo M; Han C; Palmo T; Beckham SA; Wilce MC; Johnson PE
    Biochemistry; 2013 Dec; 52(48):8652-62. PubMed ID: 24175947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A G-quadruplex-forming RNA aptamer binds to the MTG8 TAFH domain and dissociates the leukemic AML1-MTG8 fusion protein from DNA.
    Fukunaga J; Nomura Y; Tanaka Y; Torigoe H; Nakamura Y; Sakamoto T; Kozu T
    FEBS Lett; 2020 Nov; 594(21):3477-3489. PubMed ID: 32870501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of an aptamer against the Runt domain of AML1 (RUNX1) by NMR and mutational analyses.
    Takada K; Amano R; Nomura Y; Tanaka Y; Sugiyama S; Nagata T; Katahira M; Nakamura Y; Kozu T; Sakamoto T
    FEBS Open Bio; 2018 Feb; 8(2):264-270. PubMed ID: 29435416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.
    Stoltenburg R; Schubert T; Strehlitz B
    PLoS One; 2015; 10(7):e0134403. PubMed ID: 26221730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on the interface of nucleic acid aptamers and binding targets.
    Cai S; Yan J; Xiong H; Liu Y; Peng D; Liu Z
    Analyst; 2018 Nov; 143(22):5317-5338. PubMed ID: 30357118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design and biophysical characterization of thioredoxin-based aptamers: insights into peptide grafting.
    Brown CJ; Dastidar SG; See HY; Coomber DW; Ortiz-Lombardía M; Verma C; Lane DP
    J Mol Biol; 2010 Jan; 395(4):871-83. PubMed ID: 19895821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study.
    Neves MA; Reinstein O; Saad M; Johnson PE
    Biophys Chem; 2010 Dec; 153(1):9-16. PubMed ID: 21035241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry.
    Lin PH; Chen RH; Lee CH; Chang Y; Chen CS; Chen WY
    Colloids Surf B Biointerfaces; 2011 Dec; 88(2):552-8. PubMed ID: 21885262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile characterization of aptamer kinetic and equilibrium binding properties using surface plasmon resonance.
    Chang AL; McKeague M; Smolke CD
    Methods Enzymol; 2014; 549():451-66. PubMed ID: 25432760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy and Mg2+ control ligand affinity and specificity in the malachite green binding RNA aptamer.
    Bernard Da Costa J; Dieckmann T
    Mol Biosyst; 2011 Jul; 7(7):2156-63. PubMed ID: 21523267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Staphylococcus aureus DNA aptamer by enzyme-linked aptamer assay and isothermal titration calorimetry.
    Bayraç C; Öktem HA
    J Mol Recognit; 2017 Feb; 30(2):. PubMed ID: 27696554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining a stem length-dependent binding mechanism for the cocaine-binding aptamer. A combined NMR and calorimetry study.
    Neves MA; Reinstein O; Johnson PE
    Biochemistry; 2010 Oct; 49(39):8478-87. PubMed ID: 20735071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt bridge exchange binding mechanism between streptavidin and its DNA aptamer--thermodynamics and spectroscopic evidences.
    Kuo TC; Lee PC; Tsai CW; Chen WY
    J Mol Recognit; 2013 Mar; 26(3):149-59. PubMed ID: 23345105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic basis of chiral recognition in a DNA aptamer.
    Lin PH; Tong SJ; Louis SR; Chang Y; Chen WY
    Phys Chem Chem Phys; 2009 Nov; 11(42):9744-50. PubMed ID: 19851552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.