These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 27766837)
1. Vinylene-Linked Oligothiophene-Difluorobenzothiadiazole Copolymer for Transistor Applications. Casey A; Han Y; Gann E; Green JP; McNeill CR; Anthopoulos TD; Heeney M ACS Appl Mater Interfaces; 2016 Nov; 8(45):31154-31165. PubMed ID: 27766837 [TBL] [Abstract][Full Text] [Related]
2. Cyclopentadithiophene-Benzothiadiazole Donor-Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors. Li M; An C; Pisula W; Müllen K Acc Chem Res; 2018 May; 51(5):1196-1205. PubMed ID: 29664608 [TBL] [Abstract][Full Text] [Related]
3. Difluorobenzothiadiazole and Selenophene-Based Conjugated Polymer Demonstrating an Effective Hole Mobility Exceeding 5 cm Nketia-Yawson B; Jung AR; Nguyen HD; Lee KK; Kim B; Noh YY ACS Appl Mater Interfaces; 2018 Sep; 10(38):32492-32500. PubMed ID: 30129359 [TBL] [Abstract][Full Text] [Related]
4. Bithiophene-imide-based polymeric semiconductors for field-effect transistors: synthesis, structure-property correlations, charge carrier polarity, and device stability. Guo X; Ortiz RP; Zheng Y; Hu Y; Noh YY; Baeg KJ; Facchetti A; Marks TJ J Am Chem Soc; 2011 Feb; 133(5):1405-18. PubMed ID: 21207965 [TBL] [Abstract][Full Text] [Related]
5. Polarity engineering of conjugated polymers by variation of chemical linkages connecting conjugated backbones. Yun HJ; Choi HH; Kwon SK; Kim YH; Cho K ACS Appl Mater Interfaces; 2015 Mar; 7(10):5898-906. PubMed ID: 25719924 [TBL] [Abstract][Full Text] [Related]
6. Dithienosilole- and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors. Usta H; Lu G; Facchetti A; Marks TJ J Am Chem Soc; 2006 Jul; 128(28):9034-5. PubMed ID: 16834367 [TBL] [Abstract][Full Text] [Related]
7. Effect of Backbone Sequence of a Naphthalene Diimide-Based Copolymer on Performance in n-Type Organic Thin-Film Transistors. Park K; Shin EY; Jiao X; McNeill CR; Kim YH; Kwon SK; Noh YY ACS Appl Mater Interfaces; 2019 Sep; 11(38):35185-35192. PubMed ID: 31452373 [TBL] [Abstract][Full Text] [Related]
9. Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. Kim DH; Lee BL; Moon H; Kang HM; Jeong EJ; Park JI; Han KM; Lee S; Yoo BW; Koo BW; Kim JY; Lee WH; Cho K; Becerril HA; Bao Z J Am Chem Soc; 2009 May; 131(17):6124-32. PubMed ID: 19354240 [TBL] [Abstract][Full Text] [Related]
10. n-channel polymers by design: optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. Letizia JA; Salata MR; Tribout CM; Facchetti A; Ratner MA; Marks TJ J Am Chem Soc; 2008 Jul; 130(30):9679-94. PubMed ID: 18593160 [TBL] [Abstract][Full Text] [Related]
11. Improved performance in diketopyrrolopyrrole-based transistors with bilayer gate dielectrics. Ha TJ; Sonar P; Dodabalapur A ACS Appl Mater Interfaces; 2014 Mar; 6(5):3170-5. PubMed ID: 24506059 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and Photophysical Studies of Thiadiazole[3,4-c]pyridine Copolymer Based Organic Field-Effect Transistors. Bathula C; Lee SK; Kalode P; Badgujar S; Belavagi NS; Khazi IA; Kang Y J Fluoresc; 2016 May; 26(3):1045-52. PubMed ID: 27056185 [TBL] [Abstract][Full Text] [Related]
13. π-Extended Thiazole-Containing Polymer Semiconductor for Balanced Charge-Carrier Mobilities. Kang B; Kim HN; Sun C; Kwon SK; Cho K; Kim YH Macromol Rapid Commun; 2021 May; 42(9):e2000741. PubMed ID: 33660389 [TBL] [Abstract][Full Text] [Related]
14. BODIPY-thiophene copolymers as p-channel semiconductors for organic thin-film transistors. Usta H; Yilmaz MD; Avestro AJ; Boudinet D; Denti M; Zhao W; Stoddart JF; Facchetti A Adv Mater; 2013 Aug; 25(31):4327-34. PubMed ID: 23723092 [TBL] [Abstract][Full Text] [Related]
15. Centrosymmetric Thiophenemethyleneoxindole-Based Donor-Acceptor Copolymers for Organic Field-Effect Transistors. Deng Z; Li L; Ai T; Hao X; Bao W Macromol Rapid Commun; 2018 Jun; 39(11):e1800073. PubMed ID: 29722089 [TBL] [Abstract][Full Text] [Related]
16. Alkylated Selenophene-Based Ladder-Type Monomers via a Facile Route for High-Performance Thin-Film Transistor Applications. Fei Z; Han Y; Gann E; Hodsden T; Chesman ASR; McNeill CR; Anthopoulos TD; Heeney M J Am Chem Soc; 2017 Jun; 139(25):8552-8561. PubMed ID: 28548496 [TBL] [Abstract][Full Text] [Related]
18. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. Panzer MJ; Frisbie CD J Am Chem Soc; 2007 May; 129(20):6599-607. PubMed ID: 17472381 [TBL] [Abstract][Full Text] [Related]
19. Highly disordered polymer field effect transistors: N-alkyl dithieno[3,2-b:2',3'-d]pyrrole-based copolymers with surprisingly high charge carrier mobilities. Liu J; Zhang R; Sauvé G; Kowalewski T; McCullough RD J Am Chem Soc; 2008 Oct; 130(39):13167-76. PubMed ID: 18767846 [TBL] [Abstract][Full Text] [Related]
20. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors. Lei Y; Deng P; Li J; Lin M; Zhu F; Ng TW; Lee CS; Ong BS Sci Rep; 2016 Apr; 6():24476. PubMed ID: 27091315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]