These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27766841)

  • 1. Triple Isotope Effects Support Concerted Hydride and Proton Transfer and Promoting Vibrations in Human Heart Lactate Dehydrogenase.
    Wang Z; Chang EP; Schramm VL
    J Am Chem Soc; 2016 Nov; 138(45):15004-15010. PubMed ID: 27766841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proposed proton shuttle mechanism for saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; Alguindigue SS; West AH; Cook PF
    Biochemistry; 2007 Jan; 46(3):871-82. PubMed ID: 17223709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the mechanism of inosine monophosphate dehydrogenase with kinetic isotope effects and NMR determination of the hydride transfer stereospecificity.
    Xiang B; Markham GD
    Arch Biochem Biophys; 1997 Dec; 348(2):378-82. PubMed ID: 9434751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent isotope and mutagenesis studies on the proton relay system in yeast alcohol dehydrogenase 1.
    Plapp BV
    Chem Biol Interact; 2024 Jan; 388():110853. PubMed ID: 38151107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydride transfer in liver alcohol dehydrogenase: quantum dynamics, kinetic isotope effects, and role of enzyme motion.
    Billeter SR; Webb SP; Agarwal PK; Iordanov T; Hammes-Schiffer S
    J Am Chem Soc; 2001 Nov; 123(45):11262-72. PubMed ID: 11697969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects, and Heavy Enzyme Studies.
    Wang Z; Antoniou D; Schwartz SD; Schramm VL
    Biochemistry; 2016 Jan; 55(1):157-66. PubMed ID: 26652185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.
    Dzierlenga MW; Antoniou D; Schwartz SD
    J Phys Chem Lett; 2015 Apr; 6(7):1177-81. PubMed ID: 26262969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism.
    Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B
    J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple isotope effects as a probe of proton and hydride transfer in the 6-phosphogluconate dehydrogenase reaction.
    Hwang CC; Cook PF
    Biochemistry; 1998 Nov; 37(45):15698-702. PubMed ID: 9843374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure and thermodynamic properties of d-lactate dehydrogenase from Lactobacillus jensenii.
    Kim S; Gu SA; Kim YH; Kim KJ
    Int J Biol Macromol; 2014 Jul; 68():151-7. PubMed ID: 24794195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent and primary deuterium isotope effects show that lactate CH and OH bond cleavages are concerted in Y254F flavocytochrome b2, consistent with a hydride transfer mechanism.
    Sobrado P; Fitzpatrick PF
    Biochemistry; 2003 Dec; 42(51):15208-14. PubMed ID: 14690431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step versus stepwise mechanism in protonated amino acid-promoted electron-transfer reduction of a quinone by electron donors and two-electron reduction by a dihydronicotinamide adenine dinucleotide analogue. Interplay between electron transfer and hydrogen bonding.
    Yuasa J; Yamada S; Fukuzumi S
    J Am Chem Soc; 2008 Apr; 130(17):5808-20. PubMed ID: 18386924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structurally Linked Dynamics in Lactate Dehydrogenases of Evolutionarily Distinct Species.
    Varga MJ; Dzierlenga MW; Schwartz SD
    Biochemistry; 2017 May; 56(19):2488-2496. PubMed ID: 28445027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase.
    Harijan RK; Zoi I; Antoniou D; Schwartz SD; Schramm VL
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6456-6461. PubMed ID: 28584087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydride reduction of NAD+ analogues by isopropyl alcohol: kinetics, deuterium isotope effects and mechanism.
    Lu Y; Qu F; Moore B; Endicott D; Kuester W
    J Org Chem; 2008 Jul; 73(13):4763-70. PubMed ID: 18543993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the mechanism of human malic enzyme with natural and alternate dinucleotides by isotope effects.
    Rishavy MA; Yang Z; Tong L; Cleland WW
    Arch Biochem Biophys; 2001 Dec; 396(1):43-8. PubMed ID: 11716460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pressure on deuterium isotope effects of formate dehydrogenase.
    Quirk DJ; Northrop DB
    Biochemistry; 2001 Jan; 40(3):847-51. PubMed ID: 11170403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and chemical mechanisms of shikimate dehydrogenase from Mycobacterium tuberculosis.
    Fonseca IO; Silva RG; Fernandes CL; de Souza ON; Basso LA; Santos DS
    Arch Biochem Biophys; 2007 Jan; 457(2):123-33. PubMed ID: 17178095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase.
    Suarez J; Schramm VL
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11247-51. PubMed ID: 26305965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary tritium and solvent deuterium isotope effects as a probe of the reaction catalyzed by porcine recombinant dihydropyrimidine dehydrogenase.
    Rosenbaum K; Jahnke K; Schnackerz KD; Cook PF
    Biochemistry; 1998 Jun; 37(25):9156-9. PubMed ID: 9636062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.