These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 27766841)
21. NADP+-Preferring D-Lactate Dehydrogenase from Sporolactobacillus inulinus. Zhu L; Xu X; Wang L; Dong H; Yu B; Ma Y Appl Environ Microbiol; 2015 Sep; 81(18):6294-301. PubMed ID: 26150461 [TBL] [Abstract][Full Text] [Related]
22. Acid-promoted hydride transfer from an NADH analogue to a Cr(iii)-superoxo complex via a proton-coupled hydrogen atom transfer. Devi T; Lee YM; Fukuzumi S; Nam W Dalton Trans; 2021 Jan; 50(2):675-680. PubMed ID: 33331375 [TBL] [Abstract][Full Text] [Related]
23. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme. Karsten WE; Hwang CC; Cook PF Biochemistry; 1999 Apr; 38(14):4398-402. PubMed ID: 10194359 [TBL] [Abstract][Full Text] [Related]
24. Effect of Protein Isotope Labeling on the Catalytic Mechanism of Lactate Dehydrogenase. Egawa T; Deng H; Chang E; Callender R J Phys Chem B; 2019 Nov; 123(46):9801-9808. PubMed ID: 31644296 [TBL] [Abstract][Full Text] [Related]
25. Effects of pressure on deuterium isotope effects of yeast alcohol dehydrogenase using alternative substrates. Park H; Kidman G; Northrop DB Arch Biochem Biophys; 2005 Jan; 433(1):335-40. PubMed ID: 15581588 [TBL] [Abstract][Full Text] [Related]
26. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency. Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908 [TBL] [Abstract][Full Text] [Related]
27. Primary Deuterium Kinetic Isotope Effects: A Probe for the Origin of the Rate Acceleration for Hydride Transfer Catalyzed by Glycerol-3-Phosphate Dehydrogenase. Reyes AC; Amyes TL; Richard JP Biochemistry; 2018 Jul; 57(29):4338-4348. PubMed ID: 29927590 [TBL] [Abstract][Full Text] [Related]
28. Reaction coordinate of an enzymatic reaction revealed by transition path sampling. Quaytman SL; Schwartz SD Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12253-8. PubMed ID: 17640885 [TBL] [Abstract][Full Text] [Related]
29. Binding ligands and cofactor to L-lactate dehydrogenase from human skeletal and heart muscles. Świderek K; Paneth P J Phys Chem B; 2011 May; 115(19):6366-76. PubMed ID: 21526780 [TBL] [Abstract][Full Text] [Related]
30. Catalytic, Computational, and Evolutionary Analysis of the d-Lactate Dehydrogenases Responsible for d-Lactic Acid Production in Lactic Acid Bacteria. Jia B; Pu ZJ; Tang K; Jia X; Kim KH; Liu X; Jeon CO J Agric Food Chem; 2018 Aug; 66(31):8371-8381. PubMed ID: 30008205 [TBL] [Abstract][Full Text] [Related]
31. The contribution of electrostatic and van der Waals interactions to the stereospecificity of the reaction catalyzed by lactate dehydrogenase. van Beek J; Callender R; Gunner MR Biophys J; 1997 Feb; 72(2 Pt 1):619-26. PubMed ID: 9017191 [TBL] [Abstract][Full Text] [Related]
32. Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active-site model of carbonic anhydrase II. Smedarchina Z; Siebrand W; Fernández-Ramos A; Cui Q J Am Chem Soc; 2003 Jan; 125(1):243-51. PubMed ID: 12515527 [TBL] [Abstract][Full Text] [Related]
33. Temperature-Independent Kinetic Isotope Effects as Evidence for a Marcus-like Model of Hydride Tunneling in Phosphite Dehydrogenase. Howe GW; van der Donk WA Biochemistry; 2019 Oct; 58(41):4260-4268. PubMed ID: 31535852 [TBL] [Abstract][Full Text] [Related]
34. Mass Modulation of Protein Dynamics Associated with Barrier Crossing in Purine Nucleoside Phosphorylase. Antoniou D; Ge X; Schramm VL; Schwartz SD J Phys Chem Lett; 2012 Dec; 3(23):3538-3544. PubMed ID: 24496053 [TBL] [Abstract][Full Text] [Related]
35. Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors. Meng H; Liu P; Sun H; Cai Z; Zhou J; Lin J; Li Y Sci Rep; 2016 Apr; 6():24887. PubMed ID: 27109778 [TBL] [Abstract][Full Text] [Related]
36. Kinetic solvent isotope effects on the deacylation of specific acyl-papains. Proton inventory studies on the papain-catalysed hydrolyses of specific ester substrates: analysis of possible transition state structures. Szawelski RJ; Wharton CW Biochem J; 1981 Dec; 199(3):681-92. PubMed ID: 6280675 [TBL] [Abstract][Full Text] [Related]
37. Use of isotope effects and pH studies to determine the chemical mechanism of Bacillus subtilis L-alanine dehydrogenase. Grimshaw CE; Cook PF; Cleland WW Biochemistry; 1981 Sep; 20(20):5655-61. PubMed ID: 6794612 [TBL] [Abstract][Full Text] [Related]
38. Effects of high pressure on solvent isotope effects of yeast alcohol dehydrogenase. Northrop DB; Cho YK Biophys J; 2000 Sep; 79(3):1621-8. PubMed ID: 10969022 [TBL] [Abstract][Full Text] [Related]
39. The importance of ensemble averaging in enzyme kinetics. Masgrau L; Truhlar DG Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028 [TBL] [Abstract][Full Text] [Related]
40. Employing deuterium kinetic isotope effects to uncover the mechanism of (R)-3-hydroxybutyrate dehydrogenase. Machado TFG; da Silva RG Methods Enzymol; 2023; 685():225-240. PubMed ID: 37245903 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]