These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 27766842)

  • 1. Ion-Catalyzed Synthesis of Microporous Hard Carbon Embedded with Expanded Nanographite for Enhanced Lithium/Sodium Storage.
    Yu ZL; Xin S; You Y; Yu L; Lin Y; Xu DW; Qiao C; Huang ZH; Yang N; Yu SH; Goodenough JB
    J Am Chem Soc; 2016 Nov; 138(45):14915-14922. PubMed ID: 27766842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-doped catalytic graphitized hard carbon for high-performance lithium/sodium-ion batteries.
    Wang N; Liu Q; Sun B; Gu J; Yu B; Zhang W; Zhang D
    Sci Rep; 2018 Jul; 8(1):9934. PubMed ID: 29967480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Interconnected Expanded Graphitic Ribbons Embedded with Amorphous Carbon: An Advanced Carbon Nanostructure for Superior Lithium and Sodium Storage.
    Yang W; Yang W; Zhang F; Wang G; Shao G
    Small; 2018 Sep; 14(39):e1802221. PubMed ID: 30152578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring Hollow Nanostructures by Catalytic Strategy for Superior Lithium and Sodium Storage.
    Liao K; Wei H; Fan J; Xu Q; Min Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43953-43961. PubMed ID: 30452218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid aerogel-derived Sn-Ni alloy immobilized within porous carbon/graphene dual matrices for high-performance lithium storage.
    Zhang H; Zhang M; Zhang M; Zhang L; Zhang A; Zhou Y; Wu P; Tang Y
    J Colloid Interface Sci; 2017 Sep; 501():267-272. PubMed ID: 28458226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid, tunable synthesis of porous carbon xerogels with expanded graphite and their application as anodes for Li-ion batteries.
    Chen L; Deng J; Hong S; Lian H
    J Colloid Interface Sci; 2020 Apr; 565():368-377. PubMed ID: 31981846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries.
    Reitz C; Breitung B; Schneider A; Wang D; von der Lehr M; Leichtweiss T; Janek J; Hahn H; Brezesinski T
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10274-82. PubMed ID: 26867115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boron-doped graphene as a promising anode for Na-ion batteries.
    Ling C; Mizuno F
    Phys Chem Chem Phys; 2014 Jun; 16(22):10419-24. PubMed ID: 24760182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries.
    Zhang J; Yin YX; Guo YG
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27838-44. PubMed ID: 26618232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-surface-area hard carbon anode for na-ion batteries via graphene oxide as a dehydration agent.
    Luo W; Bommier C; Jian Z; Li X; Carter R; Vail S; Lu Y; Lee JJ; Ji X
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2626-31. PubMed ID: 25562593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery.
    Sun R; Wei Q; Li Q; Luo W; An Q; Sheng J; Wang D; Chen W; Mai L
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20902-8. PubMed ID: 26328897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage.
    Xing Y; Wang Y; Zhou C; Zhang S; Fang B
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2561-7. PubMed ID: 24490802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries.
    Caballero A; HernĂ¡n L; Morales J
    ChemSusChem; 2011 May; 4(5):658-63. PubMed ID: 21567976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Well-ordered mesoporous Fe
    Li M; Ma C; Zhu QC; Xu SM; Wei X; Wu YM; Tang WP; Wang KX; Chen JS
    Dalton Trans; 2017 Apr; 46(15):5025-5032. PubMed ID: 28350408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance.
    Zhou F; Xin S; Liang HW; Song LT; Yu SH
    Angew Chem Int Ed Engl; 2014 Oct; 53(43):11552-6. PubMed ID: 25213751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.