These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27766856)

  • 1. Measuring and Reporting Electrical Conductivity in Metal-Organic Frameworks: Cd
    Sun L; Park SS; Sheberla D; Dincă M
    J Am Chem Soc; 2016 Nov; 138(44):14772-14782. PubMed ID: 27766856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-Active Metal-Organic Frameworks with Three-Dimensional Lattice Containing the
    Huang H; Yang ZM; Zhou XC; Zhang G; Su J
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks.
    Park SS; Hontz ER; Sun L; Hendon CH; Walsh A; Van Voorhis T; Dincă M
    J Am Chem Soc; 2015 Feb; 137(5):1774-7. PubMed ID: 25597934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically Conductive Porous Metal-Organic Frameworks.
    Sun L; Campbell MG; Dincă M
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3566-79. PubMed ID: 26749063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zirconium metal-organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for
    Su J; Yuan S; Wang T; Lollar CT; Zuo JL; Zhang J; Zhou HC
    Chem Sci; 2020 Jan; 11(7):1918-1925. PubMed ID: 34123285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.
    Horike S; Umeyama D; Kitagawa S
    Acc Chem Res; 2013 Nov; 46(11):2376-84. PubMed ID: 23730917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework.
    Narayan TC; Miyakai T; Seki S; Dincă M
    J Am Chem Soc; 2012 Aug; 134(31):12932-5. PubMed ID: 22827709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunneling Electrical Connection to the Interior of Metal-Organic Frameworks.
    Han S; Warren SC; Yoon SM; Malliakas CD; Hou X; Wei Y; Kanatzidis MG; Grzybowski BA
    J Am Chem Soc; 2015 Jul; 137(25):8169-75. PubMed ID: 26020132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rare-Earth Metal Tetrathiafulvalene Carboxylate Frameworks as Redox-Switchable Single-Molecule Magnets.
    Su J; Yuan S; Li J; Wang HY; Ge JY; Drake HF; Leong CF; Yu F; D'Alessandro DM; Kurmoo M; Zuo JL; Zhou HC
    Chemistry; 2021 Jan; 27(2):622-627. PubMed ID: 33191540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning Electrical- and Photo-Conductivity by Cation Exchange within a Redox-Active Tetrathiafulvalene-Based Metal-Organic Framework.
    Zhou Y; Yu F; Su J; Kurmoo M; Zuo JL
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18763-18767. PubMed ID: 32652797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical Conductivity in a Porous, Cubic Rare-Earth Catecholate.
    Skorupskii G; Dincă M
    J Am Chem Soc; 2020 Apr; 142(15):6920-6924. PubMed ID: 32223159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination-bond-directed synthesis of hydrogen-bonded organic frameworks from metal-organic frameworks as templates.
    Su J; Yuan S; Cheng YX; Yang ZM; Zuo JL
    Chem Sci; 2021 Nov; 12(42):14254-14259. PubMed ID: 34760211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical conductivity through π-π stacking in a two-dimensional porous gallium catecholate metal-organic framework.
    Skorupskii G; Chanteux G; Le KN; Stassen I; Hendon CH; Dincă M
    Ann N Y Acad Sci; 2022 Dec; 1518(1):226-230. PubMed ID: 36183322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox Active Metal- and Covalent Organic Frameworks for Energy Storage: Balancing Porosity and Electrical Conductivity.
    Zhang Y; Riduan SN; Wang J
    Chemistry; 2017 Nov; 23(65):16419-16431. PubMed ID: 28766817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Prediction of Metal Organic Frameworks Suitable for Molecular Infiltration as a Route to Development of Conductive Materials.
    Nie X; Kulkarni A; Sholl DS
    J Phys Chem Lett; 2015 May; 6(9):1586-91. PubMed ID: 26263318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-switchable breathing behavior in tetrathiafulvalene-based metal-organic frameworks.
    Su J; Yuan S; Wang HY; Huang L; Ge JY; Joseph E; Qin J; Cagin T; Zuo JL; Zhou HC
    Nat Commun; 2017 Dec; 8(1):2008. PubMed ID: 29222485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox Activities of Metal-Organic Frameworks Incorporating Rare-Earth Metal Chains and Tetrathiafulvalene Linkers.
    Su J; Hu TH; Murase R; Wang HY; D'Alessandro DM; Kurmoo M; Zuo JL
    Inorg Chem; 2019 Mar; 58(6):3698-3706. PubMed ID: 30830770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
    Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M
    Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks.
    Campbell MG; Liu SF; Swager TM; Dincă M
    J Am Chem Soc; 2015 Nov; 137(43):13780-3. PubMed ID: 26456526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A conductive metal-organic framework photoanode.
    Pattengale B; Freeze JG; Guberman-Pfeffer MJ; Okabe R; Ostresh S; Chaudhuri S; Batista VS; Schmuttenmaer CA
    Chem Sci; 2020 Aug; 11(35):9593-9603. PubMed ID: 34094225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.