These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 27766884)

  • 21. Atomic Layer Deposition and Strain Analysis of Epitaxial GaN-ZnO Core-Shell Nanowires.
    Kolhep M; Pantle F; Karlinger M; Wang D; Scherer T; Kübel C; Stutzmann M; Zacharias M
    Nano Lett; 2023 Aug; 23(15):6920-6926. PubMed ID: 37499227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homogeneous core/shell ZnO/ZnMgO quantum well heterostructures on vertical ZnO nanowires.
    Cao BQ; Zúñiga-Pérez J; Boukos N; Czekalla C; Hilmer H; Lenzner J; Travlos A; Lorenz M; Grundmann M
    Nanotechnology; 2009 Jul; 20(30):305701. PubMed ID: 19584419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determining GaN Nanowire Polarity and its Influence on Light Emission in the Scanning Electron Microscope.
    Naresh-Kumar G; Bruckbauer J; Winkelmann A; Yu X; Hourahine B; Edwards PR; Wang T; Trager-Cowan C; Martin RW
    Nano Lett; 2019 Jun; 19(6):3863-3870. PubMed ID: 31035764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence.
    Sarwar AT; May BJ; Chisholm MF; Duscher GJ; Myers RC
    Nanoscale; 2016 Apr; 8(15):8024-32. PubMed ID: 27019949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray Bragg Ptychography on a Single InGaN/GaN Core-Shell Nanowire.
    Dzhigaev D; Stankevič T; Bi Z; Lazarev S; Rose M; Shabalin A; Reinhardt J; Mikkelsen A; Samuelson L; Falkenberg G; Feidenhans'l R; Vartanyants IA
    ACS Nano; 2017 Jul; 11(7):6605-6611. PubMed ID: 28264155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE.
    Tourbot G; Bougerol C; Grenier A; Den Hertog M; Sam-Giao D; Cooper D; Gilet P; Gayral B; Daudin B
    Nanotechnology; 2011 Feb; 22(7):075601. PubMed ID: 21233547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures.
    Zeng Y; Xing H; Fang Y; Huang Y; Lu A; Chen X
    Materials (Basel); 2014 Oct; 7(11):7276-7288. PubMed ID: 28788245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coalescence, crystallographic orientation and luminescence of ZnO nanowires grown on Si(001) by chemical vapour transport.
    Fernández-Garrido S; Pisador C; Lähnemann J; Lazić S; Ruiz A; Redondo-Cubero A
    Nanotechnology; 2020 Nov; 31(47):475603. PubMed ID: 32914764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial carrier confinement in core-shell and multishell nanowire heterostructures.
    Nduwimana A; Musin RN; Smith AM; Wang XQ
    Nano Lett; 2008 Oct; 8(10):3341-4. PubMed ID: 18754645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coherently Strained Si-SixGe1-x Core-Shell Nanowire Heterostructures.
    Dillen DC; Wen F; Kim K; Tutuc E
    Nano Lett; 2016 Jan; 16(1):392-8. PubMed ID: 26606651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and chemical evolution of the spontaneous core-shell structures of AlxGa1-xN/GaN nanowires.
    Fath Allah R; Ben T; González D
    Microsc Microanal; 2014 Aug; 20(4):1254-61. PubMed ID: 24698205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct measure of strain and electronic structure in GaAs/GaP core-shell nanowires.
    Montazeri M; Fickenscher M; Smith LM; Jackson HE; Yarrison-Rice J; Kang JH; Gao Q; Tan HH; Jagadish C; Guo Y; Zou J; Pistol ME; Pryor CE
    Nano Lett; 2010 Mar; 10(3):880-6. PubMed ID: 20131863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoscopic Insights into InGaN/GaN Core-Shell Nanorods: Structure, Composition, and Luminescence.
    Müller M; Veit P; Krause FF; Schimpke T; Metzner S; Bertram F; Mehrtens T; Müller-Caspary K; Avramescu A; Strassburg M; Rosenauer A; Christen J
    Nano Lett; 2016 Sep; 16(9):5340-6. PubMed ID: 27517307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coaxial In(x)Ga(1-x)N/GaN multiple quantum well nanowire arrays on Si(111) substrate for high-performance light-emitting diodes.
    Ra YH; Navamathavan R; Park JH; Lee CR
    Nano Lett; 2013 Aug; 13(8):3506-16. PubMed ID: 23701263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on Carrier Recombination in GaN/AlN Quantum Dots in Nanowires with a Core-Shell Structure.
    Deng J; Hao Z; Wang L; Yu J; Wang J; Sun C; Han Y; Xiong B; Li H; Zhao W; Liang X; Wang J; Luo Y
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33233685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of the Optimal Shell Thickness for Self-Catalyzed GaAs/AlGaAs Core-Shell Nanowires on Silicon.
    Songmuang R; Giang le TT; Bleuse J; Den Hertog M; Niquet YM; Dang le S; Mariette H
    Nano Lett; 2016 Jun; 16(6):3426-33. PubMed ID: 27081785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Electron Mobility in Nonplanar Tensile Strained Si Epitaxially Grown on Si
    Wen F; Tutuc E
    Nano Lett; 2018 Jan; 18(1):94-100. PubMed ID: 29185763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth and Optical Properties of Direct Band Gap Ge/Ge
    Assali S; Dijkstra A; Li A; Koelling S; Verheijen MA; Gagliano L; von den Driesch N; Buca D; Koenraad PM; Haverkort JE; Bakkers EP
    Nano Lett; 2017 Mar; 17(3):1538-1544. PubMed ID: 28165747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors.
    Li Y; Xiang J; Qian F; Gradecak S; Wu Y; Yan H; Blom DA; Lieber CM
    Nano Lett; 2006 Jul; 6(7):1468-73. PubMed ID: 16834431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal Growth and Characterization of n-GaN in a Multiple Quantum Shell Nanowire-Based Light Emitter with a Tunnel Junction.
    Miyamoto Y; Lu W; Sone N; Okuda R; Ito K; Okuno K; Mizutani K; Iida K; Ohya M; Iwaya M; Takeuchi T; Kamiyama S; Akasaki I
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37883-37892. PubMed ID: 34313418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.